Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; 42(4): 1751-1764, 2024.
Article in English | MEDLINE | ID: mdl-37102863

ABSTRACT

Pyrimidine and its derivatives are associated with varieties of biological properties. Therefore, we herein reported the synthesis of four novel pyrimidines (2, 3, and 4a, b) derivatives. The structure of these molecules is confirmed by spectroscopic methods such as IR, NMR, and Mass analysis. The electronic behavior of synthesized compounds 4a, b and in silico drug design 4 c, d was explained by Density Functional Theory estimations at the DFT/B3LYP level via 6-31 G++ (d, p) replicates the structure and geometry. All the synthesized compounds were screened for their in vitro COX-1 and COX-2 inhibitory activity compared to standards Celecoxib and Ibuprofen. Compounds 3 and 4a afforded excellent COX-1 and COX-2 inhibitory activities at IC50 = 5.50 and 5.05 µM against COX-1, 0.85 and 0.65 µM against COX-2, respectively. The standard drugs Celecoxib and Ibuprofen showed inhibitory activity at IC50 = 6.34 and 3.1 µM against COX-1, 0.56 and 1.2 µM against COX-2, respectively. Further, these compounds showed high potential docking with SARS-CoV-2 Omicron protease & COX-2 and predicted drug-likeness for the pyrimidine analogs by using Molinspiration. The protein stability, fluctuations of APO-protein, protein-ligand complexes were investigated through Molecular Dynamics simulations studies using Desmond Maestro 11.3 and potential lead molecules were identified.Communicated by Ramaswamy H. Sarma.


Subject(s)
Cyclooxygenase 2 Inhibitors , Ibuprofen , Cyclooxygenase 2 Inhibitors/pharmacology , Molecular Docking Simulation , Celecoxib , Molecular Structure , Cyclooxygenase 2/metabolism , Structure-Activity Relationship , Ibuprofen/pharmacology , Molecular Dynamics Simulation , Pyrimidines/chemistry
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123114, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37454435

ABSTRACT

The reaction of 3-chlorobenzo[b]thiophene-2-carbohydrazide with 4-(diethylamino) salicylaldehyde gave the new ligand; 3-chloro-N'-(4-(diethylamino)-2-hydroxybenzylidene)-benzo[b]thiophene-2-carbohydrazide. The Cu(II), Co(II), Ni(II), and Zn(II) complexes have been successfully prepared. The ligand and the complexes were characterized by analytical, FT-IR, 1H NMR, mass, UV-visible spectroscopy, molar conductivity, and magnetic susceptibility measurements. The FT-IR spectral data showed that the ligand adopted a tridentate fashion when binding with the metal ions via the nitrogen atoms of the imine (C = N), carboxyl (C = O), and phenolic oxygen (O-H) donor atoms. Density Functional Theory (DFT) estimations for the ligand at the DFT/B3LYP level via 6-31G++ (d, p) replicate the structure and geometry. Finally, HOMO and LUMO analyses were used for the charge transfer interface of the structure. Furthermore, molecular docking and ADME calculations were also performed to correlate and interpret the experimental results. The antimicrobial activity study illustrated enhancement in the activity of the free ligand upon complex formation, and the Cu(II) complex (MIC 25 µg mL-1) may be considered a promising antibacterial agent, and the Ni(II) and Zn(II) complexes (MIC 25 µg mL-1) as promising antifungal agents. Also, synthesized Cu(II) and Zn(II) metal complexes (MIC 3.125 µg mL-1) showed promising anti-TB activity against M. tuberculosis. Further, benzo[b]thiophene-based ligand and its metal complexes were evaluated for in vitro antioxidant activity, and in silico docking studies were carried out against Cytochrome c Peroxidase (PDB ID: 2X08).


Subject(s)
Anti-Infective Agents , Coordination Complexes , Antioxidants/chemistry , Coordination Complexes/chemistry , Spectroscopy, Fourier Transform Infrared , Molecular Docking Simulation , Ligands , Anti-Infective Agents/chemistry , Anti-Bacterial Agents/chemistry , Thiophenes , Schiff Bases/chemistry , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...