Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 8(9): e75636, 2013.
Article in English | MEDLINE | ID: mdl-24086597

ABSTRACT

Temperature-driven development and survival rates of the mealybug, Phenacoccussolenopsis Tinsley (Hemiptera: Pseudococcidae) were examined at nine constant temperatures (15, 20, 25, 27, 30, 32, 35 and 40°C) on hibiscus (Hibiscusrosa -sinensis L.). Crawlers successfully completed development to adult stage between 15 and 35°C, although their survival was affected at low temperatures. Two linear and four nonlinear models were fitted to describe developmental rates of P. solenopsis as a function of temperature, and for estimating thermal constants and bioclimatic thresholds (lower, optimum and upper temperature thresholds for development: Tmin, Topt and Tmax, respectively). Estimated thresholds between the two linear models were statistically similar. Ikemoto and Takai's linear model permitted testing the equivalence of lower developmental thresholds for life stages of P. solenopsis reared on two hosts, hibiscus and cotton. Thermal constants required for completion of cumulative development of female and male nymphs and for the whole generation were significantly lower on hibiscus (222.2, 237.0, 308.6 degree-days, respectively) compared to cotton. Three nonlinear models performed better in describing the developmental rate for immature instars and cumulative life stages of female and male and for generation based on goodness-of-fit criteria. The simplified ß type distribution function estimated Topt values closer to the observed maximum rates. Thermodynamic SSI model indicated no significant differences in the intrinsic optimum temperature estimates for different geographical populations of P. solenopsis. The estimated bioclimatic thresholds and the observed survival rates of P. solenopsis indicate the species to be high-temperature adaptive, and explained the field abundance of P. solenopsis on its host plants.


Subject(s)
Adaptation, Biological/physiology , Hemiptera/growth & development , Hemiptera/physiology , Hibiscus/physiology , Animals , Climate , Female , Male , Nymph/growth & development , Nymph/physiology , Survival Rate , Temperature , Thermodynamics
2.
Metallomics ; 1(5): 375-83, 2009 Sep.
Article in English | MEDLINE | ID: mdl-21305140

ABSTRACT

Chromium has received relatively little attention from plant scientists compared to other heavy metals in recent times in spite of it being a very a hazardous environmental pollutant. One of the reasons for this is the complexity of the metal's interactions with biological systems and the difficulty in studying them. Although the possible mode of entry into the plants, resultant toxicity mechanisms and tolerance potential has been worked out in plants there is still a need to get a complete picture of the Cr-plant interactome. With the advent of hyphenated technologies and global gene/protein and metabolite expression/quantification techniques, studies to elucidate the complete metallome are possible albeit resource intensive. This minireview focuses on the recent developments in the field of Cr-plant interactions and proposes a model using a systems biology and integrated -omics approach to decipher the intricacies of Cr-plant interaction.


Subject(s)
Chromium/metabolism , Chromium/pharmacology , Plants/drug effects , Plants/metabolism , Computational Biology , Gene Expression Profiling , Plant Physiological Phenomena , Plants/enzymology , Plants/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...