Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 383(6680): 275-279, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38236981

ABSTRACT

Some compact objects observed in gravitational wave events have masses in the gap between known neutron stars (NSs) and black holes (BHs). The nature of these mass gap objects is unknown, as is the formation of their host binary systems. We report pulsar timing observations made with the Karoo Array Telescope (MeerKAT) of PSR J0514-4002E, an eccentric binary millisecond pulsar in the globular cluster NGC 1851. We found a total binary mass of 3.887 ± 0.004 solar masses (M⊙), and multiwavelength observations show that the pulsar's binary companion is also a compact object. The companion's mass (2.09 to 2.71 M⊙, 95% confidence interval) is in the mass gap, indicating either a very massive NS or a low-mass BH. We propose that the companion formed in a merger between two earlier NSs.

2.
J Mech Behav Biomed Mater ; 152: 106424, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38290392

ABSTRACT

Magnesium/Ceria nanocomposites (Mg/xCeO2 NCs (x = 0.5 %, 1 % and 1.5 %)) prepared by using powder metallurgy and microwave sintering method are assessed for their corrosion rate for a period of 28 days. As per the immersion tests results, the addition of ceria nanoparticles to pure Mg, brought about a noteworthy improvement to corrosion resistance. A corrosion rate of approximately 0.84 mm/year for Mg/0.5CeO2 and 0.99 mm/year for Mg/1.0CeO2 nanocomposites were observed. Another aspect of the study involves employing the simulation method i.e. finite element analysis (FEA) to compare the stress distribution in magnesium-ceria nanocomposite based screws and circular bars especially for Mg/0.5CeO2 and Mg/1.0CeO2. Further, the simulation also gives a perception of the impact of masticatory forces, the biting force and shear stress exerted on the Mg/0.5CeO2 and Mg/1.0CeO2 based screws. The simulations results show that the screws showed an acceptable level of stresses for a biting force up to 300 N. The circular bar as well kept its stresses at acceptable levels for the same load of 300N. The shear stress results indicated that a biting force up to 602 N can be safely absorbed by Mg/0.5CeO2 screw. The comprehensive approach allows for a better understanding of the corrosion behavior, stress distribution, and mechanical properties of the Mg/CeO2 nanocomposites, enabling the development of effective temporary implants for craniofacial trauma fixation that can withstand normal physiological forces during mastication. The study reported in this paper aims to target Mg/xCeO2 NCs for temporary implants for craniofacial trauma fixation.


Subject(s)
Fractures, Bone , Mandibular Reconstruction , Nanocomposites , Humans , Magnesium , Finite Element Analysis , Imaging, Three-Dimensional/methods
3.
J Mol Recognit ; 36(2): e3002, 2023 02.
Article in English | MEDLINE | ID: mdl-36495231

ABSTRACT

Obesity is taking over many parts of the world and has been identified as the second leading cause of preventable death, with a dramatic increase in prevalence over the last two decades. Pancreatic lipase is a lipid-digesting enzyme that plays an important role in fat metabolism. Inhibiting pancreatic lipase is an attractive target for obesity treatment. Phytochemicals or bioactive compounds/extracts isolated from medicinal plants offer a promising platform for the development of pancreatic lipase inhibitors. This study aims to characterize and investigate the effect of aloenin A, glycoside found in Aloe vera, as a possible inhibitor of pancreatic lipase in vitro and in silico. A. vera extract had an IC50 value of 0.5472 µg/ml, whereas aloenin A had an IC50 value of 14.95 µg/mL and was found to inhibit in a competitive manner. These findings were supported by molecular docking studies, which revealed that aloenin A binds to the substrate binding site with a binding energy of - 7.16 kcal/mol, and this binding site is stabilized by three hydrogen bonds contributed by Phe77 and Asp79 . Our findings suggest that the anti-hyperlipidemic effects of A. vera on pancreatic lipase can be attributed in part to the presence of aloenin A.


Subject(s)
Aloe , Glycosides , Aloe/chemistry , Molecular Docking Simulation , Lipase , Plant Extracts/pharmacology , Plant Extracts/chemistry
4.
J Ayurveda Integr Med ; 13(4): 100675, 2022.
Article in English | MEDLINE | ID: mdl-36481618

ABSTRACT

Dyslipidemia is a common feature of type 2 diabetes mellitus and is characterised by elevated triglyceride, decreased HDL cholesterol, and increased small dense LDL cholesterol levels. The underlying causes appears to be associated with insulin resistance, increased free fatty acid reflux, and low-grade inflammation, resulting in increased hepatic lipogenesis, and altered lipoprotein metabolism. Improved glycaemic control has been shown to have a positive effect on lipoprotein levels in diabetics. This can be achieved through medications/therapeutics and life style changes. Several classes of pharmacologic agents are currently in use to treat dyslipidemia. However, they may have dangerous long-term side effects, including an increased risk of liver dysfunction, weight gain, and cardiovascular diseases. Therefore, stronger alternatives with fewer side effects are required to reduce the diabetes associated complications. Many secondary plant metabolites have been shown to improve glucose homeostasis and lower lipid levels. Aloe vera and its constituents have long been used in a traditional medicine system for a diverse range of biological activities, including hypoglycaemic, antioxidant, anticarcinogenic, anti-inflammatory, and wound healing effects through various mechanisms and they have been covered well in literature. However, studies on the potential role of Aloe vera in the treatment of diabetic dyslipidemia are scanty. Therefore, in this systematic review, we focussed on the potential effect of Aloe vera and its active components in alleviating diabetic dyslipidemia, as well as their mechanism of action in pre-clinical and clinical studies.

5.
J Mol Recognit ; 35(11): e2983, 2022 11.
Article in English | MEDLINE | ID: mdl-35852019

ABSTRACT

Diabetes mellitus (DM) has spread across the globe, increasing the risk of obesity, cardiovascular disease, and other comorbidities. Despite substantial research into the development of diabetic treatments that are effective in lowering blood glucose levels, their efficiency is short-lived due to unpleasant side effects such as weight gain and hypoglycemia. The discovery of secondary metabolites in the prevention and treatment of diabetes and its complications has an incentive to take interest in plant-based medications, and enzyme inhibitors have the potential to aid in the treatment and management of DM. This study aims to isolate, characterize, and analyse the influence of berberine-like alkaloids from alcoholic Cardiospermum halicacabum extract in vitro and in silico, as a possible inhibitor of Dipeptidyl peptidase-IV (DPP-IV) and α-amylase, two essential enzymes involved in diabetes. The alkaloid from C. halicacabum was identified as berberine, with an m/z of 336.1263. Purified berberine inhibits DPP-IV with an IC50 of 16.328 ± 1.344 µM and inhibits α-amylase by 72% at 10 µg/mL. In-silico studies demonstrated that berberine was found to bind to the active site of both DPP-IV and α-amylase. The precise mechanism underlying the observation has to be researched further in order to investigate C. halicacabum's anti-diabetic effects and argue for its possible application as alternative medicine.


Subject(s)
Alkaloids , Berberine , Dipeptidyl-Peptidase IV Inhibitors , Sapindaceae , Berberine/pharmacology , Blood Glucose , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , alpha-Amylases
SELECTION OF CITATIONS
SEARCH DETAIL
...