Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 15(23): 6202-6208, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38836909

ABSTRACT

The usage of rare-earth-metal catalysts in the synthesis of organic compounds is widespread in chemical industries but is limited owing to its environmental and economic costs. However, recent studies indicate that abundant-earth metals like iron(III) chloride can photocatalyze diverse organic transformations using blue-light LEDs. Still, the underlying mechanism behind such activity is debatable and controversial, especially in the absence of ultrafast spectroscopic results. To address this urgent challenge, we performed femtosecond time-resolved electronic absorption spectroscopy experiments of iron(III) chloride in selected organic solvents relevant to its photocatalytic applications. Our results show that the long-lived species [Fe(II) ← Cl•]* is primarily responsible for both oxidizing the organic substrate and reducing molecular oxygen through the diffusion process, leading to the final product and regenerating the photocatalyst rather than the most widely proposed free chloride radical (Cl•). Our study will guide the rational design of efficient earth-abundant photocatalysts.

2.
Acc Chem Res ; 54(23): 4383-4394, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34842416

ABSTRACT

Photochemical reactions are increasingly being used for chemical and materials synthesis, for example, in photoredox catalysis, and generally involve photoexcitation of molecular chromophores dissolved in a liquid solvent. The choice of solvent influences the outcomes of the photochemistry because solute-solvent interactions modify the energies of and crossings between electronic states of the chromophores, and they affect the evolving structures of the photoexcited molecules. Ultrafast laser spectroscopy methods with femtosecond to picosecond time resolution can resolve the dynamics of these photoexcited molecules as they undergo structural and electronic changes, relax back to the ground state, dissipate their excess internal energy to the surrounding solvent, or undergo photochemical reactions. In this Account, we illustrate how experimental studies using ultrafast lasers can reveal the influences that different solvents or cosolutes exert on the photoinduced nonadiabatic dynamics of internal conversion and intersystem crossing in nonradiative relaxation pathways. Although the environment surrounding a solute molecule is rapidly changing, with fluctuations in the coordination to neighboring solvent molecules occurring on femtosecond or picosecond time scales, we show that it is possible to photoexcite selectively only those molecular chromophores transiently experiencing specific solute-solvent interactions such as intermolecular hydrogen bonding.The effects of different solvation environments on the photodynamics are illustrated using four selected examples of photochemical processes in which the solvent has a marked effect on the outcomes. We first consider two aromatic carbonyl compounds, benzophenone and acetophenone, which are known to undergo fast intersystem crossing to populate the first excited triplet state on time scales of a few picoseconds. We show that the nonadiabatic excited-state dynamics are modified by transient hydrogen bonding of the carbonyl group to a protic solvent or by coordination to a metal cation cosolute. We then examine how different solvents modify the competition between two alternative relaxation pathways in a photoexcited UVA-sunscreen molecule, diethylamino hydroxybenzoyl hexyl benzoate (DHHB). This relaxation back to the ground electronic state is an essential part of the effective operation of the sunscreen compound, but the dynamics are sensitive to the surrounding environment. Finally, we consider how solvents of different polarity affect the energies and lifetimes of excited states with locally excited or charge-transfer character in heterocyclic organic compounds used as excited-state electron donors for photoredox catalysis. With these and other examples, we seek to develop a molecular level understanding of how the choice of solution environment might be used to control the outcomes of photochemical reactions.

3.
J Phys Chem A ; 125(2): 636-645, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33416312

ABSTRACT

The excited-state dynamics of photoexcited diethylamino hydroxybenzoyl hexyl benzoate (DHHB), a UVA absorber widely used in sunscreen formulations, are studied with transient electronic and vibrational absorption spectroscopy methods in four different solvents. In the polar solvents methanol, dimethyl sulfoxide (DMSO), and acetonitrile, strong stimulated emission (SE) is observed at early time delays after photoexcitation at a near-UV wavelength of λex = 360 nm, and decays with time constants of 420 fs in methanol and 770 fs in DMSO. The majority (∼95%) of photoexcited DHHB returns to the ground state with time constants of 15 ps in methanol and 25 ps in DMSO. In the nonpolar solvent cyclohexane, ∼ 98% of DHHB photoexcited at λex = 345 nm relaxes to the ground state with a ∼ 10 ps time constant, and the SE is weak. DHHB preferentially adopts an enol form in its ground S0 state, but excited state absorption (ESA) bands seen in TEAS are assigned to both the S1-keto and S1-enol forms, indicating a role for ultrafast intramolecular excited state hydrogen transfer (ESHT). This ESHT is inhibited by polar solvents. The two S1 tautomers decay with similar time scales to the observed recovery of ground state population. For molecules that avoid ESHT, torsion around a central C-C bond minimizes the S1-enol energy, quenches the SE, and is proposed to lead to a conical intersection with the S0 state that mediates the ground state recovery. A competing trans-enol isomeric photoproduct is observed as a minor competitor to parent recovery in polar solvents. Evidence is presented for triplet (T1) enol production in polar solvents, and for T1 quenching by octocrylene, a common UVB absorber sunscreen additive. The T1 keto form is observed in cyclohexane solution.

4.
Langmuir ; 36(23): 6502-6511, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32423219

ABSTRACT

Dimethyl sulfoxide (DMSO) is a common cosolvent and cryopreservation agent used to freeze cells and tissues. DMSO alters the H-bond structure of water, but its interactions with biomolecules and, specifically, with biological interfaces remain poorly understood. Here we investigate the effects of DMSO on the H-bond dynamics at the lipid-water interface using a combination of ultrafast two-dimensional infrared (2D IR) spectroscopy and molecular dynamics simulations. Ester carbonyl absorption spectra show that DMSO dehydrates the interface, and simulations show that the area per lipid is decreased. Ultrafast 2D IR spectra measure the time scales of frequency fluctuations at the ester carbonyl positions located precisely between the hydrophobic and hydrophilic regions of the membrane. 2D IR measurements show that low DMSO concentrations (<10 mol %) induce ∼40% faster H-bond dynamics compared with pure water, whereas increased concentrations (>10-20 mol %) once again slow down the dynamics. This slow-fast-slow trend is described in terms of two different solvation regimes. Below 10 mol %, DMSO weakens the interfacial H bond, leading to faster "bulk-like" dynamics, whereas above 10 mol %, water molecules become "relatively immobilized" as the H-bond networks becoming disrupted by the H-bond donor/acceptor imbalance at the interface. These studies are an important step toward characterizing the environments around lipid membranes, which are essential to numerous biological processes.

5.
Chem Sci ; 11(7): 1991-2000, 2020 Jan 13.
Article in English | MEDLINE | ID: mdl-34123294

ABSTRACT

Ring-strain in cyclic organic molecules is well-known to influence their chemical reactivity. Here, we examine the consequence of ring-strain for competing photochemical pathways that occur on picosecond timescales. The significance of Norrish Type-I photochemistry is explored for three cyclic ketones in cyclohexane solutions at ultraviolet (UV) excitation wavelengths from 255-312 nm, corresponding to an π* ← n excitation to the lowest excited singlet state (S1). Ultrafast transient absorption spectroscopy with broadband UV/visible probe laser pulses reveals processes common to cyclobutanone, cyclopentanone and cyclohexanone, occurring on timescales of ≤1 ps, 7-9 ps and >500 ps. These kinetic components are respectively assigned to prompt cleavage of an α C-C bond in the internally excited S1-state molecules prepared by UV absorption, vibrational cooling of these hot-S1 molecules to energies below the barrier to C-C bond cleavage on the S1 state potential energy surface (with commensurate reductions in the energy-dependent α-cleavage rate), and slower loss of thermalized S1-state population. The thermalized S1-state molecules may competitively decay by activated reaction over the barrier to α C-C bond fission on the S1-state potential energy surface, internal conversion to the ground (S0) electronic state, or intersystem crossing to the lowest lying triplet state (T1) and subsequent C-C bond breaking. The α C-C bond fission barrier height in the S1 state is significantly reduced by the ring-strain in cyclobutanone, affecting the relative contributions of the three decay time components which depend systematically on the excitation energy above the S1-state energy barrier. Transient infra-red absorption spectra obtained after UV excitation identify ring-opened ketene photoproducts of cyclobutanone and their timescales for formation.

6.
J Am Chem Soc ; 141(38): 15222-15229, 2019 09 25.
Article in English | MEDLINE | ID: mdl-31478656

ABSTRACT

A long-standing ambition of photochemists is to excite species selectively in a complex liquid solution and in turn instigate a controlled chemical reaction. Benzophenone (Bzp) has been studied over six decades as a model system for understanding the photophysics and photochemistry of organic chromophores. Herein, we exploit the red-edge excitation effect to demonstrate that by subensemble selective excitation of Bzp molecules, either coordinated or noncoordinated to phenol through hydrogen bonding in a dichloromethane solution, the rate of an H atom abstraction reaction can be accelerated by a factor of ∼40. To this end, we have employed femtosecond time-resolved electronic and vibrational absorption spectroscopy in conjunction with DFT/TD-DFT calculations. The outcomes have implications for deductions drawn from single-excitation-wavelength studies of the photochemistry of similar molecular systems and especially of charge-transfer chromophores.

8.
J Phys Chem Lett ; 9(7): 1642-1648, 2018 Apr 05.
Article in English | MEDLINE | ID: mdl-29537284

ABSTRACT

Solvation plays a critical role in various physicochemical and biological processes. Here, the rate of intersystem crossing (ISC) of benzophenone from its S1(nπ*) state to its triplet manifold of states is shown to be modified by hydrogen-bonding interactions with protic solvent molecules. We selectively photoexcite benzophenone with its carbonyl group either solvent coordinated or uncoordinated by tuning the excitation wavelength to the band center (λ = 340 nm) or the long-wavelength edge (λ = 380 nm) of its π* ← n absorption band. A combination of ultrafast absorption and Raman spectroscopy shows that the hydrogen-bonding interaction increases the time constant for ISC from <200 fs to 1.7 ± 0.2 ps for benzophenone in CH3OH. The spectroscopic evidence suggests that the preferred pathway for ISC is from the S1(nπ*) to the T2(ππ*) state, with the rate of internal conversion from T2(ππ*) to T1(nπ*) controlled by solvent quenching of excess vibrational energy.

SELECTION OF CITATIONS
SEARCH DETAIL
...