Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Chem ; 28(11): 2397-408, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19839653

ABSTRACT

A 280-d study examined the effects of 17ß-estradiol (E2) on reproduction and development of the sheepshead minnow (Cyprinodon variegatus) exposed from the parental (F0) through three subsequent (F1, F2, and F3) generations and evaluated the need for multigenerational assessments of the risks of endocrine-disrupting chemicals. This first three-generation study exposed adult F0 and F1 fish to measured concentrations of 0.01, 0.04, 0.08, 0.2, and 0.3 µg E2/L; the F2 and F3 generations were exposed to 0.2 µg E2/L or less. The cumulative 21-d production of normal embryos was significantly reduced in the F0 generation at 0.3 µg E2/L and in the F1 and F2 generations at 0.08 µg E2/L or more. The daily reproductive rate was significantly reduced in all three generations at 0.08 µg E2/L or more during spawning days 8 to 14 and 15 to 21. The proportion of infertile eggs from F1 fish was significantly increased above that of the solvent controls at 0.04 and 0.2 µg E2/L and from F2 fish at 0.04 µg E2/L or more. Changes in liver, kidney, and gonadal tissues were seen in the F0 and F1 generations exposed to 0.2 µg E2/L or more. The female gonadosomatic index was significantly decreased at 0.3 µg E2/L in the F0 and F1 generations. Estradiol affected the hepatosomatic index only in female F1 fish, but not in a dose-dependent manner. All F1 fish in 0.3 µg E2/L appeared to be phenotypically female. Our results indicate that life-cycle exposure to E2 significantly decreased embryo production by F1 and F2 fish at concentrations lower than those affecting the F0 generation, and they emphasize the importance of evaluating the impact of an estrogenic chemical on reproduction through a minimum of two (F0 and F1) generations.


Subject(s)
Endocrine Disruptors/toxicity , Environmental Exposure , Estradiol/toxicity , Killifishes/growth & development , Reproduction/drug effects , Water Pollutants, Chemical/toxicity , Analysis of Variance , Animals , Female , Fertility/drug effects , Gonads/drug effects , Gonads/physiopathology , Kidney/drug effects , Kidney/physiopathology , Liver/drug effects , Liver/physiopathology , Male
2.
Biologicals ; 30(4): 259-70, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12421584

ABSTRACT

A real time quantitative PCR assay has been developed for detecting minute virus of mice (MVM). This assay directly quantifies PCR product by monitoring the increase of fluorescence intensity emitted during enzymatic hydrolysis of an oligonucleotide probe labelled covalently with fluorescent reporting and quenching dyes via Taq polymerase 5'-->3' exonuclease activity. The quantity of MVM DNA molecules in the samples was determined using a known amount of MVM standard control DNA fragment cloned into a plasmid (pCR-MVM). We have demonstrated that MVM TaqMan PCR assay is approximately 1000-fold more sensitive than the microplate infectivity assay with the lowest detection limit of approximately one particle per reaction. The reliable detection range is within 100 to 10(9) molecules per reaction with high reproducibility. The intra assay variation is <2.5%, and the inter assays variation is <6.5% when samples contain >100 particles/assay. When we applied the TaqMan PCR to MVM clearance studies done by column chromatography or normal flow viral filtration, we found that the virus removal factors were similar to that of virus infectivity assay. It takes about a day to complete entire assay processes, thus, the TaqMan PCR assay is at least 10-fold faster than the infectivity assay. Therefore, we concluded that this fast, specific, sensitive, and robust assay could replace the infectivity assay for virus clearance evaluation.


Subject(s)
Minute Virus of Mice/genetics , Minute Virus of Mice/isolation & purification , Polymerase Chain Reaction/methods , Animals , Base Sequence , Biological Products/isolation & purification , Cell Line , Chromatography, Liquid , Cytopathogenic Effect, Viral , DNA Primers/genetics , DNA, Viral/genetics , DNA, Viral/isolation & purification , Drug Contamination , Humans , Mice , Polymerase Chain Reaction/statistics & numerical data , Sensitivity and Specificity , Ultrafiltration , Virology/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...