Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
JACS Au ; 2(4): 787-792, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35557768

ABSTRACT

Cu-exchanged chabazite zeolites (Cu-CHA) are effective catalysts for the NH3-assisted selective catalytic reduction of NO (NH3-SCR) for the abatement of NO x emission from diesel vehicles. However, the presence of a small amount of SO2 in diesel exhaust gases leads to a severe reduction in the low-temperature activity of these catalysts. To shed light on the nature of such deactivation, we characterized a Cu-CHA catalyst under well-defined exposures to SO2 using in situ X-ray absorption spectroscopy. By varying the pretreatment procedure prior to the SO2 exposure, we have selectively prepared CuI and CuII species with different ligations, which are relevant for the NH3-SCR reaction. The highest reactivity toward SO2 was observed for CuII species coordinated to both NH3 and extraframework oxygen, in particular for [CuII 2(NH3)4O2]2+ complexes. Cu species without either ammonia or extraframework oxygen ligands were much less reactive, and the associated SO2 uptake was significantly lower. These results explain why SO2 mostly affects the low-temperature activity of Cu-CHA catalysts, since the dimeric complex [CuII 2(NH3)4O2]2+ is a crucial intermediate in the low-temperature NH3-SCR catalytic cycle.

2.
IUCrJ ; 6(Pt 1): 66-71, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30713704

ABSTRACT

During screening of the phase space using KOH and 1-methyl-4-aza-1-azoniabicyclo-[2.2.2]octane hydroxide (1-methyl-DABCO) under hydrothermal zeolite synthesis conditions, K-paracelsian was synthesized. Scanning electron microscopy, energy dispersive X-ray spectroscopy and ex situ powder X-ray diffraction analysis revealed a material that is compositionally closely related to the mineral microcline and structurally closely related to the mineral paracelsian, both of which are feldspars. In contrast to the feldspars, K-paracelsian contains intrazeolitic water corresponding to one molecule per cage. In the case of K-paracelsian it might be useful to consider it a link between feldspars and zeolites. It was also shown that K-paracelsian can be described as the simplest endmember of a family of dense double-crankshaft zeolite topologies. By applying the identified building principle, a number of known zeolite topologies can be constructed. Furthermore, it facilitates the construction of a range of hypothetical small-pore structures that are crystallo-chemically healthy, but which have not yet been realized experimentally.

3.
J Phys Chem Lett ; 9(13): 3738-3743, 2018 Jul 05.
Article in English | MEDLINE | ID: mdl-29874083

ABSTRACT

The direct and quantitative identification of active sites is crucial for the development of zeolite catalysts and their implementation in industry. Herein we report on the application of one-dimensional 119Sn direct polarization (DP) and rotational echo double-resonance (REDOR) and two-dimensional 119Sn magic-angle tuning (MAT) NMR spectroscopy for the identification of different Sn sites in fully dehydrated Sn-BEA zeolite. It is demonstrated that 119Sn magic-angle spinning (MAS) NMR techniques, modified by Carr-Purcell-Meiboom-Gill (CPMG) echo-train acquisition allow to resolve three groups of NMR signals, which can be attributed to three groups of nonequivalent T-sites based on the existing theoretical predictions: (I) T9, T4, and T3; (II) T2, T1, and T8; and (III) T7, T5, and T6. Results suggest that the sites attributed to group III are the most populated in Sn-BEA samples obtained via the fluoride route. The attribution of NMR lines to different T-sites in the structure of BEA allows for the establishment of structure-reactivity relationship and therefore for further improvement of Sn-BEA catalysts.

5.
Chemistry ; 23(54): 13404-13414, 2017 Sep 27.
Article in English | MEDLINE | ID: mdl-28707766

ABSTRACT

The direct preparation of different iron-containing Beta and CHA zeolites has been attempted under diverse synthesis conditions, including in alkaline and fluoride media, to evaluate the influence of their physicochemical properties on the selective catalytic reduction (SCR) of NOx using NH3 as reductant. Of the different Fe-Beta zeolites, the sample prepared in the absence of alkali cations with a Si/Al ratio of around 13 showed high NO conversion values (>90 %). However, this catalyst suffered from severe deactivation when aged at high temperatures in the presence of steam. The preparation of more hydrophobic Fe-Beta zeolites did not improve the resistance of the catalyst against steam. In contrast, Fe-CHA zeolites prepared by a one-pot method under alkaline conditions with a Si/Al ratio of around 13 by using N,N,N-trimethyladamantylammonium as template not only showed excellent catalytic activity but also high hydrothermal stability, especially when sodium cations were selectively removed. Moreover, the Fe-CHA material synthesized by using the less expensive tetraethylammonium template also resulted in an active and hydrothermally stable catalyst.

6.
J Phys Chem Lett ; 7(7): 1249-53, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-26978430

ABSTRACT

(119)Sn CPMG MAS NMR is demonstrated to be a fast and efficient method for characterization of Sn-sites in Sn-containing zeolites. Tuning of the CPMG echo-train sequence decreases the experimental time by a factor of 5-40 in the case of as-synthesized and hydrated Sn-BEA samples and by 3 orders of magnitude in the case of dehydrated Sn-BEA samples as compared to conventional methods. In the latter case, the reconstruction of the quantitative spectrum without the loss of sensitivity is shown to be possible. The method proposed allows obtaining (119)Sn MAS NMR spectra with improved resolution for Sn-BEA zeolites with natural (119)Sn isotope abundance using conventional MAS NMR equipment.

7.
Dalton Trans ; 42(35): 12741-61, 2013 Sep 21.
Article in English | MEDLINE | ID: mdl-23842567

ABSTRACT

Cu-SSZ-13 has been characterized by different spectroscopic techniques and compared with Cu-ZSM-5 and Cu-ß with similar Si/Al and Cu/Al ratios and prepared by the same ion exchange procedure. On vacuum activated samples, low temperature FTIR spectroscopy allowed us to appreciate a high concentration of reduced copper centres, i.e. isolated Cu(+) ions located in different environments, able to form Cu(+)(N2), Cu(+)(CO)n (n = 1, 2, 3), and Cu(+)(NO)n (n = 1, 2) upon interaction with N2, CO and NO probe molecules, respectively. Low temperature FTIR, DRUV-Vis and EPR analysis on O2 activated samples revealed the presence of different Cu(2+) species. New data and discussion are devoted to (i) [Cu-OH](+) species likely balanced by one framework Al atom; (ii) mono(µ-oxo)dicopper [Cu2(µ-O)](2+) dimers observed in Cu-ZSM-5 and Cu-ß, but not in Cu-SSZ-13. UV-Vis-NIR spectra of O2 activated samples reveal an intense and finely structured d-d quadruplet, unique to Cu-SSZ-13, which is persistent under SCR conditions. This differs from the 22,700 cm(-1) band of the mono(µ-oxo)dicopper species of the O2 activated Cu-ZSM-5, which disappears under SCR conditions. The EPR signal intensity sets Cu-ß apart from the others.

8.
Chem Commun (Camb) ; 47(48): 12864-6, 2011 Dec 28.
Article in English | MEDLINE | ID: mdl-22048337

ABSTRACT

A new concept to prepare tight bifunctional catalysts has been developed, by anchoring CoMo(6) clusters on hierarchical ZSM-5 zeolites for simultaneous use in HDS and hydrocracking catalysis. The prepared material displays a significant improved activity in HDS catalysis compared to the impregnated counterpart.

SELECTION OF CITATIONS
SEARCH DETAIL
...