Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Sci Adv ; 9(42): eabp9530, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37851804

ABSTRACT

Although initially successful, treatments with chemotherapy often fail because of the recurrence of chemoresistant metastases. Since these tumors develop after treatment, resistance is generally thought to occur in response to chemotherapy. However, alternative mechanisms of intrinsic chemoresistance in the chemotherapy-naïve setting may exist but remain poorly understood. Here, we study drug-naïve murine breast cancer brain metastases (BCBMs) to identify how cancer cells growing in a secondary site can acquire intrinsic chemoresistance without cytotoxic agent exposure. We demonstrate that drug-naïve murine breast cancer cells that form cancer lesions in the brain undergo vascular mimicry and concomitantly express the adenosine 5'-triphosphate-binding cassette transporter breast cancer resistance protein (BCRP), a common marker of brain endothelial cells. We reveal that expression of BCRP by the BCBM tumor cells protects them against doxorubicin and topotecan. We conclude that BCRP overexpression can cause intrinsic chemoresistance in cancer cells growing in metastatic sites without prior chemotherapy exposure.


Subject(s)
Antineoplastic Agents , Brain Neoplasms , Breast Neoplasms , Animals , Female , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Brain Neoplasms/drug therapy , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Drug Resistance, Neoplasm/genetics , Endothelial Cells/metabolism , Neoplasm Proteins/metabolism
2.
Nat Cancer ; 4(9): 1326-1344, 2023 09.
Article in English | MEDLINE | ID: mdl-37640930

ABSTRACT

The lysyl oxidase family represents a promising target in stromal targeting of solid tumors due to the importance of this family in crosslinking and stabilizing fibrillar collagens and its known role in tumor desmoplasia. Using small-molecule drug-design approaches, we generated and validated PXS-5505, a first-in-class highly selective and potent pan-lysyl oxidase inhibitor. We demonstrate in vitro and in vivo that pan-lysyl oxidase inhibition decreases chemotherapy-induced pancreatic tumor desmoplasia and stiffness, reduces cancer cell invasion and metastasis, improves tumor perfusion and enhances the efficacy of chemotherapy in the autochthonous genetically engineered KPC model, while also demonstrating antifibrotic effects in human patient-derived xenograft models of pancreatic cancer. PXS-5505 is orally bioavailable, safe and effective at inhibiting lysyl oxidase activity in tissues. Our findings present the rationale for progression of a pan-lysyl oxidase inhibitor aimed at eliciting a reduction in stromal matrix to potentiate chemotherapy in pancreatic ductal adenocarcinoma.


Subject(s)
Pancreatic Diseases , Pancreatic Neoplasms , Humans , Gemcitabine , Protein-Lysine 6-Oxidase , Pancreatic Neoplasms/drug therapy
3.
Cancer Cell ; 41(6): 1170-1185.e12, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37311414

ABSTRACT

Although treatment with taxanes does not always lead to clinical benefit, all patients are at risk of their detrimental side effects such as peripheral neuropathy. Understanding the in vivo mode of action of taxanes can help design improved treatment regimens. Here, we demonstrate that in vivo, taxanes directly trigger T cells to selectively kill cancer cells in a non-canonical, T cell receptor-independent manner. Mechanistically, taxanes induce T cells to release cytotoxic extracellular vesicles, which lead to apoptosis specifically in tumor cells while leaving healthy epithelial cells intact. We exploit these findings to develop an effective therapeutic approach, based on transfer of T cells pre-treated with taxanes ex vivo, thereby avoiding toxicity of systemic treatment. Our study reveals a different in vivo mode of action of one of the most commonly used chemotherapies, and opens avenues to harness T cell-dependent anti-tumor effects of taxanes while avoiding systemic toxicity.


Subject(s)
Extracellular Vesicles , Neoplasms , Humans , T-Lymphocytes , Taxoids/pharmacology , Apoptosis , Epithelial Cells , Neoplasms/drug therapy
4.
Dev Cell ; 58(7): 535-549.e5, 2023 04 10.
Article in English | MEDLINE | ID: mdl-36905927

ABSTRACT

The basement membrane (BM) around tumor lobes forms a barrier to prevent cancer cells from invading the surrounding tissue. Although myoepithelial cells are key producers of the healthy mammary epithelium BM, they are nearly absent in mammary tumors. To study the origin and dynamics of the BM, we developed and imaged a laminin beta1-Dendra2 mouse model. We show that the turnover of laminin beta1 is faster in the BMs that surround the tumor lobes than in the BMs that surround the healthy epithelium. Moreover, we find that epithelial cancer cells and tumor-infiltrating endothelial cells synthesize laminin beta1 and that this production is temporarily and locally heterogeneous, leading to local discontinuity of the BM laminin beta1. Collectively, our data draw a new paradigm for tumor BM turnover in which the disassembly happens at a constant rate, and a local misbalance of compensating production leads to reduction or even complete disappearance of the BM.


Subject(s)
Breast Neoplasms , Laminin , Animals , Female , Humans , Mice , Basement Membrane , Breast Neoplasms/pathology , Endothelial Cells , Epithelial Cells , Disease Models, Animal
5.
Cell Rep Med ; 3(11): 100821, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36384097

ABSTRACT

An increasing number of breast cancer patients develop brain metastases (BM). Standard-of-care treatments are largely inefficient, and breast cancer brain metastasis (BCBM) patients are considered untreatable. Immunotherapies are not successfully employed in BCBM, in part because breast cancer is a "cold" tumor and also because the brain tissue has a unique immune landscape. Here, we generate and characterize immunocompetent models of BCBM derived from PyMT and Neu mammary tumors to test how harnessing the pro-senescence properties of doxorubicin can be used to prime the specific immune BCBM microenvironment. We reveal that BCBM senescent cells, induced by doxorubicin, trigger the recruitment of PD1-expressing T cells to the brain. Importantly, we demonstrate that induction of senescence with doxorubicin improves the efficacy of immunotherapy with anti-PD1 in BCBM in a CD8 T cell-dependent manner, thereby providing an optimized strategy to introduce immune-based treatments in this lethal disease. In addition, our BCBM models can be used for pre-clinical testing of other therapeutic strategies in the future.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Brain Neoplasms/drug therapy , Doxorubicin/pharmacology , Immunotherapy , Tumor Microenvironment
6.
Cancers (Basel) ; 14(13)2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35804890

ABSTRACT

(1) Background: an increasing number of breast cancer patients develop lethal brain metastases (BM). The complete removal of these tumors by surgery becomes complicated when cells infiltrate into the brain parenchyma. However, little is known about the nature of these invading cells in breast cancer brain metastasis (BCBM). (2) Methods: we use intravital microscopy through a cranial window to study the behavior of invading cells in a mouse model of BCBM. (3) Results: we demonstrate that BCBM cells that escape from the metastatic mass and infiltrate into brain parenchyma undergo epithelial-to-mesenchymal transition (EMT). Moreover, cells undergoing EMT revert to an epithelial state when growing tumor masses in the brain. Lastly, through multiplex immunohistochemistry, we confirm the presence of these infiltrative cells in EMT in patient samples. (4) Conclusions: together, our data identify the critical role of EMT in the invasive behavior of BCBM, which warrants further consideration to target those cells when treating BCBM.

7.
Sci Rep ; 12(1): 424, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013418

ABSTRACT

Glioma is the most common form of malignant primary brain tumours in adults. Their highly invasive nature makes the disease incurable to date, emphasizing the importance of better understanding the mechanisms driving glioma invasion. Glial fibrillary acidic protein (GFAP) is an intermediate filament protein that is characteristic for astrocyte- and neural stem cell-derived gliomas. Glioma malignancy is associated with changes in GFAP alternative splicing, as the canonical isoform GFAPα is downregulated in higher-grade tumours, leading to increased dominance of the GFAPδ isoform in the network. In this study, we used intravital imaging and an ex vivo brain slice invasion model. We show that the GFAPδ and GFAPα isoforms differentially regulate the tumour dynamics of glioma cells. Depletion of either isoform increases the migratory capacity of glioma cells. Remarkably, GFAPδ-depleted cells migrate randomly through the brain tissue, whereas GFAPα-depleted cells show a directionally persistent invasion into the brain parenchyma. This study shows that distinct compositions of the GFAPnetwork lead to specific migratory dynamics and behaviours of gliomas.


Subject(s)
Brain Neoplasms/pathology , Brain/pathology , Cell Movement , Glial Fibrillary Acidic Protein/metabolism , Glioma/pathology , Animals , Brain Neoplasms/metabolism , Cell Line, Tumor , Female , Glioma/metabolism , Intravital Microscopy , Male , Mice, Inbred C57BL , Neoplasm Invasiveness , Protein Isoforms
8.
Clin Cancer Res ; 28(5): 960-971, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34965952

ABSTRACT

PURPOSE: Extensive work in preclinical models has shown that microenvironmental cells influence many aspects of cancer cell behavior, including metastatic potential and their sensitivity to therapeutics. In the human setting, this behavior is mainly correlated with the presence of immune cells. Here, in addition to T cells, B cells, macrophages, and mast cells, we identified the relevance of nonimmune cell types for breast cancer survival and therapy benefit, including fibroblasts, myoepithelial cells, muscle cells, endothelial cells, and seven distinct epithelial cell types. EXPERIMENTAL DESIGN: Using single-cell sequencing data, we generated reference profiles for all these cell types. We used these reference profiles in deconvolution algorithms to optimally detangle the cellular composition of more than 3,500 primary breast tumors of patients that were enrolled in the SCAN-B and MATADOR clinical trials, and for which bulk mRNA sequencing data were available. RESULTS: This large data set enables us to identify and subsequently validate the cellular composition of microenvironments that distinguish differential survival and treatment benefit for different treatment regimens in patients with primary breast cancer. In addition to immune cells, we have identified that survival and therapy benefit are characterized by various contributions of distinct epithelial cell types. CONCLUSIONS: From our study, we conclude that differential survival and therapy benefit of patients with breast cancer are characterized by distinct microenvironments that include specific populations of immune and epithelial cells.


Subject(s)
Breast Neoplasms , Breast Neoplasms/drug therapy , Breast Neoplasms/therapy , Cellular Microenvironment , Endothelial Cells/pathology , Female , Humans , Tumor Microenvironment/genetics
9.
Sci Adv ; 7(40): eabh0363, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34586840

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic, chemoresistant malignancy and is characterized by a dense, desmoplastic stroma that modulates PDAC progression. Here, we visualized transient manipulation of focal adhesion kinase (FAK), which integrates bidirectional cell-environment signaling, using intravital fluorescence lifetime imaging microscopy of the FAK-based Förster resonance energy transfer biosensor in mouse and patient-derived PDAC models. Parallel real-time quantification of the FUCCI cell cycle reporter guided us to improve PDAC response to standard-of-care chemotherapy at primary and secondary sites. Critically, micropatterned pillar plates and stiffness-tunable matrices were used to pinpoint the contribution of environmental cues to chemosensitization, while fluid flow­induced shear stress assessment, patient-derived matrices, and personalized in vivo models allowed us to deconstruct how FAK inhibition can reduce PDAC spread. Last, stratification of PDAC patient samples via Merlin status revealed a patient subset with poor prognosis that are likely to respond to FAK priming before chemotherapy.

10.
Nat Commun ; 12(1): 3950, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34168137

ABSTRACT

The concept that extracellular vesicles (EVs) from the diet can be absorbed by the intestinal tract of the consuming organism, be bioavailable in various organs, and in-turn exert phenotypic changes is highly debatable. Here, we isolate EVs from both raw and commercial bovine milk and characterize them by electron microscopy, nanoparticle tracking analysis, western blotting, quantitative proteomics and small RNA sequencing analysis. Orally administered bovine milk-derived EVs survive the harsh degrading conditions of the gut, in mice, and is subsequently detected in multiple organs. Milk-derived EVs orally administered to mice implanted with colorectal and breast cancer cells reduce the primary tumor burden. Intriguingly, despite the reduction in primary tumor growth, milk-derived EVs accelerate metastasis in breast and pancreatic cancer mouse models. Proteomic and biochemical analysis reveal the induction of senescence and epithelial-to-mesenchymal transition in cancer cells upon treatment with milk-derived EVs. Timing of EV administration is critical as oral administration after resection of the primary tumor reverses the pro-metastatic effects of milk-derived EVs in breast cancer models. Taken together, our study provides context-based and opposing roles of milk-derived EVs as metastasis inducers and suppressors.


Subject(s)
Extracellular Vesicles , Milk/cytology , Neoplasms, Experimental/pathology , Administration, Oral , Animals , Biological Availability , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Cattle , Cell Line, Tumor , Cell Proliferation , Epithelial-Mesenchymal Transition , Extracellular Vesicles/chemistry , Extracellular Vesicles/genetics , Female , Humans , Liver Neoplasms, Experimental/pathology , Liver Neoplasms, Experimental/secondary , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Mice, Inbred BALB C , Neoplasms, Experimental/therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/therapy , Tissue Distribution , Xenograft Model Antitumor Assays
11.
Cells ; 10(3)2021 03 10.
Article in English | MEDLINE | ID: mdl-33801903

ABSTRACT

Double strand breaks (DSBs) are highly toxic to a cell, a property that is exploited in radiation therapy. A critical component for the damage induction is cellular oxygen, making hypoxic tumor areas refractory to the efficacy of radiation treatment. During a fractionated radiation regimen, these hypoxic areas can be re-oxygenated. Nonetheless, hypoxia still constitutes a negative prognostic factor for the patient's outcome. We hypothesized that this might be attributed to specific hypoxia-induced cellular traits that are maintained upon reoxygenation. Here, we show that reoxygenation of hypoxic non-transformed RPE-1 cells fully restored induction of DSBs but the cells remain radioresistant as a consequence of hypoxia-induced quiescence. With the use of the cell cycle indicators (FUCCI), cell cycle-specific radiation sensitivity, the cell cycle phase duration with live cell imaging, and single cell tracing were assessed. We observed that RPE-1 cells experience a longer G1 phase under hypoxia and retain a large fraction of cells that are non-cycling. Expression of HPV oncoprotein E7 prevents hypoxia-induced quiescence and abolishes the radioprotective effect. In line with this, HPV-negative cancer cell lines retain radioresistance, while HPV-positive cancer cell lines are radiosensitized upon reoxygenation. Quiescence induction in hypoxia and its HPV-driven prevention was observed in 3D multicellular spheroids. Collectively, we identify a new hypoxia-dependent radioprotective phenotype due to hypoxia-induced quiescence that accounts for a global decrease in radiosensitivity that can be retained upon reoxygenation and is absent in cells expressing oncoprotein E7.


Subject(s)
Cell Hypoxia/physiology , Radiation, Ionizing , Cell Line, Tumor , Humans
12.
Cancer Rep (Hoboken) ; 3(1): e1209, 2020 02.
Article in English | MEDLINE | ID: mdl-32671954

ABSTRACT

BACKGROUND: The use of in vitro cell cultures is a powerful tool for obtaining key insights into the behaviour and response of cells to interventions in normal and disease situations. Unlike in vivo settings, in vitro experiments allow a fine-tuned control of a range of microenvironmental elements independently within an isolated setting. The recent expansion in the use of three-dimensional (3D) in vitro assays has created a number of representative tools to study cell behaviour in a more physiologically 3D relevant microenvironment. Complex 3D in vitro models that can recapitulate human tissue biology are essential for understanding the pathophysiology of disease. AIM: The development of the 3D coculture collagen contraction and invasion assay, the "organotypic assay," has been widely adopted as a powerful approach to bridge the gap between standard two-dimensional tissue culture and in vivo mouse models. In the cancer setting, these assays can then be used to dissect how stromal cells, such as cancer-associated fibroblasts (CAFs), drive extracellular matrix (ECM) remodelling to alter cancer cell behaviour and response to intervention. However, to date, many of the published organotypic protocols are low-throughput, time-consuming (up to several weeks), and work-intensive with often limited scalability. Our aim was to develop a fast, high-throughput, scalable 3D organotypic assay for use in oncology screening and drug development. METHODS AND RESULTS: Here, we describe a modified 96-well organotypic assay, the "Mini-Organo," which can be easily completed within 5 days. We demonstrate its application in a wide range of mouse and human cancer biology approaches including evaluation of stromal cell 3D ECM remodelling, 3D cancer cell invasion, and the assessment of efficacy of potential anticancer therapeutic targets. Furthermore, the organotypic assay described is highly amenable to customisation using different cell types under diverse experimental conditions. CONCLUSIONS: The Mini-Organo high-throughput 3D organotypic assay allows the rapid screening of potential cancer therapeutics in human and mouse models in a time-efficient manner.


Subject(s)
Coculture Techniques/methods , Drug Development/methods , Drug Screening Assays, Antitumor/methods , Animals , Cancer-Associated Fibroblasts/physiology , High-Throughput Screening Assays , Humans , Mice , Neoplasm Invasiveness , Rats
13.
Expert Opin Ther Targets ; 24(3): 171-174, 2020 03.
Article in English | MEDLINE | ID: mdl-32031028

ABSTRACT

Introduction: Pancreatic cancer (PC) is responsible for significant worldwide cancer-associated mortality and has one of the lowest five-year survival rate post-diagnosis of all epithelial cancers. A major contributor to this dismal outcome is the extensive stromal reaction that occurs during PC progression. As such, targeting key components of the pancreatic tumor stroma in combination with standard-of-care chemotherapy has been a recent focus in both the pre-clinical and clinical settings.Areas Covered: In this commentary, we highlight how perlecan was identified as a new potential target for this disease.Expert Opinion: Perlecan is deposited by cancer-associated fibroblasts (CAFs) in the pancreatic tumor stroma, and work from our laboratory group recently demonstrated that depleting perlecan reduces metastatic spread, while also improving chemotherapy efficacy in pancreatic tumors harboring a gain-of-function p53 mutation. We also discuss potential strategies to therapeutically target perlecan which could be tested in pre-clinical models prior to translation into the clinic.


Subject(s)
Cancer-Associated Fibroblasts , Pancreatic Neoplasms , Heparan Sulfate Proteoglycans , Humans , Stromal Cells
14.
Small GTPases ; 11(1): 45-52, 2020 01.
Article in English | MEDLINE | ID: mdl-28972449

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease; the identification of novel targets and development of effective treatment strategies are urgently needed to improve patient outcomes. Remodeling of the pancreatic stroma occurs during PDAC development, which drives disease progression and impairs responses to therapy. The actomyosin regulatory ROCK1 and ROCK2 kinases govern cell motility and contractility, and have been suggested to be potential targets for cancer therapy, particularly to reduce the metastatic spread of tumor cells. However, ROCK inhibitors are not currently used for cancer patient treatment, largely due to the overwhelming challenge faced in the development of anti-metastatic drugs, and a lack of clarity as to the cancer types most likely to benefit from ROCK inhibitor therapy. In 2 recent publications, we discovered that ROCK1 and ROCK2 expression were increased in PDAC, and that increased ROCK activity was associated with reduced survival and PDAC progression by enabling extracellular matrix (ECM) remodeling and invasive growth of pancreatic cancer cells. We also used intravital imaging to optimize ROCK inhibition using the pharmacological ROCK inhibitor fasudil (HA-1077), and demonstrated that short-term ROCK targeting, or 'priming', improved chemotherapy efficacy, disrupted cancer cell collective movement, and impaired metastasis. This body of work strongly indicates that the use of ROCK inhibitors in pancreatic cancer therapy as 'priming' agents warrants further consideration, and provides insights as to how transient mechanical manipulation, or fine-tuning the ECM, rather than chronic stromal ablation might be beneficial for improving chemotherapeutic efficacy in the treatment of this deadly disease.


Subject(s)
Molecular Targeted Therapy/methods , Pancreatic Neoplasms/drug therapy , rho-Associated Kinases/metabolism , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/therapeutic use , Animals , Disease Progression , Humans , Pancreatic Neoplasms/enzymology , Pancreatic Neoplasms/metabolism , rho-Associated Kinases/antagonists & inhibitors
15.
Article in English | MEDLINE | ID: mdl-31615867

ABSTRACT

Metastasis is a highly dynamic process during which cancer and microenvironmental cells undergo a cascade of events required for efficient dissemination throughout the body. During the metastatic cascade, tumor cells can change their state and behavior, a phenomenon commonly defined as cellular plasticity. To monitor cellular plasticity during metastasis, high-resolution intravital microscopy (IVM) techniques have been developed and allow us to visualize individual cells by repeated imaging in animal models. In this review, we summarize the latest technological advancements in the field of IVM and how they have been applied to monitor metastatic events. In particular, we highlight how longitudinal imaging in native tissues can provide new insights into the plastic physiological and developmental processes that are hijacked by cancer cells during metastasis.


Subject(s)
Cell Plasticity , Intravital Microscopy/methods , Neoplasm Metastasis/pathology , Animals , Humans , Neoplasms/diagnostic imaging , Tumor Microenvironment
16.
Trends Cancer ; 5(11): 724-741, 2019 11.
Article in English | MEDLINE | ID: mdl-31735290

ABSTRACT

Cancer-associated fibroblasts (CAFs) are one of the most significant components in the tumour microenvironment (TME), where they can perform several protumourigenic functions. Several studies have recently reported that CAFs are more heterogenous and plastic than was previously thought. As such, there has been a shift in the field to study CAF subpopulations and the emergent functions of these subsets in tumourigenesis. In this review, we explore how different aspects of CAF heterogeneity are defined and how these manifest in multiple cancers, with a focus on pancreatic ductal adenocarcinoma (PDAC). We also discuss therapeutic approaches to selectively target protumourigenic CAF functions, while avoiding normal fibroblasts, providing insight into the future of stromal targeting for the treatment of PDAC and other solid tumours.


Subject(s)
Cancer-Associated Fibroblasts/pathology , Carcinoma, Pancreatic Ductal/pathology , Molecular Targeted Therapy/methods , Pancreatic Neoplasms/pathology , Animals , Carcinoma, Pancreatic Ductal/therapy , Humans , Pancreatic Neoplasms/therapy , Stromal Cells/pathology , Tumor Microenvironment
17.
Nat Commun ; 10(1): 3637, 2019 08 12.
Article in English | MEDLINE | ID: mdl-31406163

ABSTRACT

Heterogeneous subtypes of cancer-associated fibroblasts (CAFs) coexist within pancreatic cancer tissues and can both promote and restrain disease progression. Here, we interrogate how cancer cells harboring distinct alterations in p53 manipulate CAFs. We reveal the existence of a p53-driven hierarchy, where cancer cells with a gain-of-function (GOF) mutant p53 educate a dominant population of CAFs that establish a pro-metastatic environment for GOF and null p53 cancer cells alike. We also demonstrate that CAFs educated by null p53 cancer cells may be reprogrammed by either GOF mutant p53 cells or their CAFs. We identify perlecan as a key component of this pro-metastatic environment. Using intravital imaging, we observe that these dominant CAFs delay cancer cell response to chemotherapy. Lastly, we reveal that depleting perlecan in the stroma combined with chemotherapy prolongs mouse survival, supporting it as a potential target for anti-stromal therapies in pancreatic cancer.


Subject(s)
Cancer-Associated Fibroblasts/pathology , Drug Resistance, Neoplasm/genetics , Heparan Sulfate Proteoglycans/metabolism , Pancreatic Neoplasms/pathology , Tumor Suppressor Protein p53/metabolism , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic/genetics , Mice , Mice, Inbred BALB C , Neoplasm Invasiveness/pathology , Pancreas/pathology , Pancreatic Neoplasms/genetics , Signal Transduction/physiology , Tumor Suppressor Protein p53/genetics
18.
Nat Commun ; 9(1): 5083, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30504844

ABSTRACT

Whereas genomic aberrations in the SLIT-ROBO pathway are frequent in pancreatic ductal adenocarcinoma (PDAC), their function in the pancreas is unclear. Here we report that in pancreatitis and PDAC mouse models, epithelial Robo2 expression is lost while Robo1 expression becomes most prominent in the stroma. Cell cultures of mice with loss of epithelial Robo2 (Pdx1Cre;Robo2F/F) show increased activation of Robo1+ myofibroblasts and induction of TGF-ß and Wnt pathways. During pancreatitis, Pdx1Cre;Robo2F/F mice present enhanced myofibroblast activation, collagen crosslinking, T-cell infiltration and tumorigenic immune markers. The TGF-ß inhibitor galunisertib suppresses these effects. In PDAC patients, ROBO2 expression is overall low while ROBO1 is variably expressed in epithelium and high in stroma. ROBO2low;ROBO1high patients present the poorest survival. In conclusion, Robo2 acts non-autonomously as a stroma suppressor gene by restraining myofibroblast activation and T-cell infiltration. ROBO1/2 expression in PDAC patients may guide therapy with TGF-ß inhibitors or other stroma /immune modulating agents.


Subject(s)
Pancreas/metabolism , Pancreas/pathology , Receptors, Immunologic/metabolism , Transforming Growth Factor beta/metabolism , Animals , Blotting, Western , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Cells, Cultured , Female , Flow Cytometry , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , In Situ Hybridization , In Vitro Techniques , Male , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Pancreatitis/genetics , Pancreatitis/metabolism , Receptors, Immunologic/genetics , Signal Transduction/genetics , Signal Transduction/physiology , Trans-Activators/genetics , Trans-Activators/metabolism , Roundabout Proteins
19.
EMBO Mol Med ; 10(9)2018 09.
Article in English | MEDLINE | ID: mdl-30108112

ABSTRACT

The centrosomal protein, CEP55, is a key regulator of cytokinesis, and its overexpression is linked to genomic instability, a hallmark of cancer. However, the mechanism by which it mediates genomic instability remains elusive. Here, we showed that CEP55 overexpression/knockdown impacts survival of aneuploid cells. Loss of CEP55 sensitizes breast cancer cells to anti-mitotic agents through premature CDK1/cyclin B activation and CDK1 caspase-dependent mitotic cell death. Further, we showed that CEP55 is a downstream effector of the MEK1/2-MYC axis. Blocking MEK1/2-PLK1 signaling therefore reduced outgrowth of basal-like syngeneic and human breast tumors in in vivo models. In conclusion, high CEP55 levels dictate cell fate during perturbed mitosis. Forced mitotic cell death by blocking MEK1/2-PLK1 represents a potential therapeutic strategy for MYC-CEP55-dependent basal-like, triple-negative breast cancers.


Subject(s)
Aneuploidy , Cell Cycle Proteins/metabolism , Cytokinesis , Mitosis , Nuclear Proteins/metabolism , Breast Neoplasms/pathology , CDC2 Protein Kinase/metabolism , Caspases/metabolism , Cell Cycle Proteins/genetics , Cell Death , Cell Line, Tumor , Cyclin B/metabolism , Gene Expression , Gene Knockdown Techniques , Humans , Models, Biological , Nuclear Proteins/genetics
20.
Elife ; 72018 07 09.
Article in English | MEDLINE | ID: mdl-29985127

ABSTRACT

Intravital microscopy can provide unique insights into the function of biological processes in a native context. However, physiological motion caused by peristalsis, respiration and the heartbeat can present a significant challenge, particularly for functional readouts such as fluorescence lifetime imaging (FLIM), which require longer acquisition times to obtain a quantitative readout. Here, we present and benchmark Galene, a versatile multi-platform software tool for image-based correction of sample motion blurring in both time resolved and conventional laser scanning fluorescence microscopy data in two and three dimensions. We show that Galene is able to resolve intravital FLIM-FRET images of intra-abdominal organs in murine models and NADH autofluorescence of human dermal tissue imaging subject to a wide range of physiological motions. Thus, Galene can enable FLIM imaging in situations where a stable imaging platform is not always possible and rescue previously discarded quantitative imaging data.


Subject(s)
Imaging, Three-Dimensional , Intravital Microscopy , Motion , Algorithms , Animals , Biosensing Techniques , Cell Adhesion , Computer Simulation , Fluorescence Resonance Energy Transfer , Guanosine Triphosphate/metabolism , Humans , Intestines/physiology , Mice , Microscopy, Fluorescence , Models, Biological , Neoplasm Metastasis , Neuropeptides/metabolism , Pancreatic Neoplasms/pathology , Skin/anatomy & histology , Software , rac1 GTP-Binding Protein/metabolism , src-Family Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...