Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 8: 26, 2008 Mar 03.
Article in English | MEDLINE | ID: mdl-18315879

ABSTRACT

BACKGROUND: The effects of viral infection involve concomitant plant gene variations and cellular changes. A simple system is required to assess the complexity of host responses to viral infection. The genome of the Rice yellow mottle virus (RYMV) is a single-stranded RNA with a simple organisation. It is the most well-known monocotyledon virus model. Several studies on its biology, structure and phylogeography have provided a suitable background for further genetic studies. 12 rice chromosome sequences are now available and provide strong support for genomic studies, particularly physical mapping and gene identification. RESULTS: The present data, obtained through the cDNA-AFLP technique, demonstrate differential responses to RYMV of two different rice cultivars, i.e. susceptible IR64 (Oryza sativa indica), and partially resistant Azucena (O. s. japonica). This RNA profiling provides a new original dataset that will enable us to gain greater insight into the RYMV/rice interaction and the specificity of the host response. Using the SIM4 subroutine, we took the intron/exon structure of the gene into account and mapped 281 RYMV stress responsive (RSR) transcripts on 12 rice chromosomes corresponding to 234 RSR genes. We also mapped previously identified deregulated proteins and genes involved in partial resistance and thus constructed the first global physical map of the RYMV/rice interaction. RSR transcripts on rice chromosomes 4 and 10 were found to be not randomly distributed. Seven genes were identified in the susceptible and partially resistant cultivars, and transcripts were colocalized for these seven genes in both cultivars. During virus infection, many concomitant plant gene expression changes may be associated with host changes caused by the infection process, general stress or defence responses. We noted that some genes (e.g. ABC transporters) were regulated throughout the kinetics of infection and differentiated susceptible and partially resistant hosts. CONCLUSION: We enhanced the first RYMV/rice interaction map by combining information from the present study and previous studies on proteins and ESTs regulated during RYMV infection, thus providing a more comprehensive view on genes related to plant responses. This combined map provides a new tool for exploring molecular mechanisms underlying the RYMV/rice interaction.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant/genetics , Oryza/genetics , Oryza/virology , Plant Proteins/genetics , Plant Viruses/physiology , Genotype , Nucleic Acid Amplification Techniques , Plant Diseases/genetics , Plant Diseases/virology
2.
Proteomics ; 4(1): 216-25, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14730683

ABSTRACT

We have used two-dimensional gel electrophoresis with mass spectrometry analysis to study the temporal patterns of protein expression during RYMV (Rice yellow mottle virus) infection in rice cells of two cultivars: IR64, Oryza sativa indica, susceptible, and Azucena, O. sativa japonica, partially resistant to RYMV. Proteomic analysis of nonstressed and RYMV inoculated cells showed statistically significant changes in the relative levels of 40 IR64 proteins and 24 Azucena proteins. Protein identification using mass spectrometry was attempted for all the differentially regulated proteins. This global analysis detected 32 hypothetical "new" proteins. Nineteen differentially regulated proteins were identified for IR64 cultivar, while 13 were identified for Azucena cultivar, including proteins in three functional categories: metabolism, stress-related proteins, and translation. These data revealed that a number of proteins regulated by abiotic stress response pathway were activated by RYMV in both cultivars (such as salt-induced protein, heat shock proteins (HSPs), superoxide dismutase (SOD), and others have functions consistent with the susceptibility or partially resistance trait (such as dehydrin, proteins involved in glycolysis pathway).


Subject(s)
Oryza/chemistry , Plant Viruses/physiology , Proteome/chemistry , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/physiology , Oryza/physiology , Oryza/virology , Plant Viruses/genetics , Proteome/physiology , RNA/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...