Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Psychiatry ; 29(3): 624-632, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38145984

ABSTRACT

(R,S)-methadone ((R,S)-MTD) is a µ-opioid receptor (MOR) agonist comprised of (R)-MTD and (S)-MTD enantiomers. (S)-MTD is being developed as an antidepressant and is considered an N-methyl-D-aspartate receptor (NMDAR) antagonist. We compared the pharmacology of (R)-MTD and (S)-MTD and found they bind to MORs, but not NMDARs, and induce full analgesia. Unlike (R)-MTD, (S)-MTD was a weak reinforcer that failed to affect extracellular dopamine or induce locomotor stimulation. Furthermore, (S)-MTD antagonized motor and dopamine releasing effects of (R)-MTD. (S)-MTD acted as a partial agonist at MOR, with complete loss of efficacy at the MOR-galanin Gal1 receptor (Gal1R) heteromer, a key mediator of the dopaminergic effects of opioids. In sum, we report novel and unique pharmacodynamic properties of (S)-MTD that are relevant to its potential mechanism of action and therapeutic use. One-sentence summary: (S)-MTD, like (R)-MTD, binds to and activates MORs in vitro, but (S)-MTD antagonizes the MOR-Gal1R heteromer, decreasing its abuse liability.


Subject(s)
Analgesics, Opioid , Methadone , Receptors, Opioid, mu , Receptors, Opioid, mu/metabolism , Receptors, Opioid, mu/drug effects , Animals , Methadone/pharmacology , Male , Analgesics, Opioid/pharmacology , Humans , Mice , Dopamine/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Ligands , Stereoisomerism
2.
Biol Psychiatry ; 93(12): 1118-1126, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36841701

ABSTRACT

BACKGROUND: (S)-ketamine is an NMDA receptor antagonist, but it also binds to and activates mu opioid receptors (MORs) and kappa opioid receptors in vitro. However, the extent to which these receptors contribute to (S)-ketamine's in vivo pharmacology is unknown. METHODS: We investigated the extent to which (S)-ketamine interacts with opioid receptors in rats by combining in vitro and in vivo pharmacological approaches, in vivo molecular and functional imaging, and behavioral procedures relevant to human abuse liability. RESULTS: We found that the preferential opioid receptor antagonist naltrexone decreased (S)-ketamine self-administration and (S)-ketamine-induced activation of the nucleus accumbens, a key brain reward region. A single reinforcing dose of (S)-ketamine occupied brain MORs in vivo, and repeated doses decreased MOR density and activity and decreased heroin reinforcement without producing changes in NMDA receptor or kappa opioid receptor density. CONCLUSIONS: These results suggest that (S)-ketamine's abuse liability in humans is mediated in part by brain MORs.


Subject(s)
Ketamine , Rats , Humans , Animals , Ketamine/pharmacology , Receptors, Opioid, mu/physiology , Receptors, N-Methyl-D-Aspartate , Heroin , Receptors, Opioid/metabolism , Receptors, Opioid, kappa/metabolism
3.
Mol Imaging Biol ; 25(2): 384-390, 2023 04.
Article in English | MEDLINE | ID: mdl-35999424

ABSTRACT

PURPOSE: 6-O-(2-[18F]Fluoroethyl)-6-O-desmethyl-diprenorphine ([18F]FE-DPN) is regarded as a non-selective opioid receptor radiotracer. PROCEDURE: Here, we report the first characterization of [18F]FE-DPN synthesized from the novel precursor, 6-O-(2-tosyloxyethoxy)-6-O-desmethyl-3-O-trityl-diprenorphine (TE-TDDPN), using a one-pot, two-step nucleophilic radiosynthesis to image opioid receptors in rats and mice using positron emission tomography. RESULTS: We also show that [18F]FE-DPN and [3H]DPN exhibit negligible brain uptake in mu opioid receptor (MOR) knockout mice. CONCLUSIONS: Taken together with prior findings, our results suggest that [18F]FE-DPN and [3H]DPN preferentially bind to MOR in rodents in vivo.


Subject(s)
Positron-Emission Tomography , Receptors, Opioid, mu , Rats , Mice , Animals , Diprenorphine/metabolism , Receptors, Opioid, mu/metabolism , Positron-Emission Tomography/methods , Brain/metabolism , Receptors, Opioid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...