Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 102(6): 5148-5160, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30904304

ABSTRACT

Diet-induced milk fat depression (MFD) in lactating cows has been attributed to alterations in ruminal lipid metabolism leading to the formation of specific fatty acid (FA) biohydrogenation intermediates that directly inhibit milk fat synthesis. However, the mechanisms responsible for decreased lipid synthesis in the mammary gland over time are not well defined. The aim of this study was to evaluate the effect of diet on milk FA composition and milk fat production over time, especially during MFD, and explore the associations between MFD and FA biohydrogenation intermediates in omasal digesta and milk. Four lactating Finnish Ayrshire cows used in a 4 × 4 Latin square with a 2 × 2 factorial arrangement of treatments and 35-d experimental periods were fed diets formulated to cause differences in ruminal and mammary lipid metabolism. Treatments consisted of an iso-nitrogenous total mixed ration based on grass silage with a forage to concentrate ratio of 65:35 or 35:65 without added oil, or with sunflower oil at 50 g/kg of diet dry matter. The high-concentrate diet with sunflower oil (HSO) induced a 2-stage drop in milk fat synthesis that was accompanied by specific temporal changes in the milk FA composition. The MFD on HSO was associated especially with trans-10 18:1 and also with trans-9,cis-11 conjugated linoleic acid (CLA) in milk and omasal digesta across all diets and was accompanied by the appearance of trans-10,cis-15 18:2. Trans-10,cis-12 CLA was increased in HSO, but milk fat secretion was not associated with omasal or milk trans-10,cis-12 CLA. The temporal changes in milk fat content and yield and milk FA composition reflect the shift from the predominant ruminal biohydrogenation pathway to an alternative pathway. The ambiguous role of trans-10,cis-12 CLA suggests that trans-10 18:1, trans-9,cis-11 CLA and trans-10,cis-15 18:2 or additional mechanisms contributed to the diet-induced MFD in lactating cows.


Subject(s)
Cattle/metabolism , Diet/veterinary , Fatty Acids/metabolism , Milk/metabolism , Animals , Female , Hydrogenation , Lactation , Linoleic Acids, Conjugated/pharmacology , Lipid Metabolism , Milk/chemistry , Omasum/metabolism , Poaceae , Silage , Sunflower Oil
2.
Transl Anim Sci ; 1(3): 277-286, 2017 Sep.
Article in English | MEDLINE | ID: mdl-32704652

ABSTRACT

The effects of supplementing high- or low-concentrate diets with sunflower oil (SO) on rumen fermentation, nutrient utilization, and ruminal methane (CH4) emissions in lactating cows were examined. Four multiparous Nordic Red dairy cows fitted with rumen cannulae were used in a 4 × 4 Latin square with a 2 × 2 factorial arrangement of treatments and 35-d periods. Experimental treatments comprised iso-nitrogenous total mixed rations based on grass silage with forage to concentrate ratio of 65:35 or 35:65 supplemented with 0 or 50 g/kg diet DM of SO. Apparent ruminal OM and starch digestibility was greater (P < 0.05) with high- than low-concentrate diets but was unaffected by SO. Inclusion of SO in high-concentrate diet decreased (P ≤ 0.05) apparent total tract OM, fiber, and GE, and apparent ruminal fiber digestibility. High-concentrate diets and SO shifted (P < 0.05) fiber digestion from rumen to the hindgut. High-concentrate diet resulted in a lower rumen pH and elevated total rumen VFA concentration compared with low-concentrate diet, whereas SO increased rumen pH and decreased rumen VFA concentration when included in high-, but not low-concentrate diet (P < 0.05 for interaction). High-concentrate diet reduced rumen ammonia-N (P < 0.01) and molar proportion of acetate to propionate (P < 0.01), and decreased (P < 0.05) ruminal CH4 emissions when expressed as g/d or g/kg OM digested in the rumen. With both low- and high-concentrate diets, SO reduced (P < 0.05) daily emissions of CH4 as g/d or g/kg OM digested in the rumen, but SO reduced CH4 emissions expressed as g/kg OM intake, OM digested in total digestive tract, energy-corrected milk or % of GE intake only with low-concentrate diet (P ≤ 0.05 for interaction). In conclusion, replacing grass silage with concentrates led to a reduction in daily ruminal CH4 emissions that were accompanied by a shift in rumen fermentation toward the synthesis of propionate, and decreases in rumen pH and fiber digestion. Sunflower oil was effective in reducing daily CH4 emissions in lactating cows which was accompanied by a noticeable lower feed intake with high- but not low-concentrate diet. Overall the effects of SO and greater proportion of concentrates in the diet on daily CH4 emissions were additive but the additivity declined or vanished when different indices of CH4 emission intensity were considered. Consequently, SO was more effective in reducing CH4 emissions when low-concentrate diet was fed.

SELECTION OF CITATIONS
SEARCH DETAIL
...