Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Front Cell Dev Biol ; 11: 1209589, 2023.
Article in English | MEDLINE | ID: mdl-37842096

ABSTRACT

A powerful method to qualitatively analyze a 2D system is the use of nullclines, curves which separate regions of the plane where the sign of the time derivatives is constant, with their intersections corresponding to steady states. As a quick way to sketch the phase portrait of the system, they can be sufficient to understand the qualitative dynamics at play without integrating the differential equations. While it cannot be extended straightforwardly for dimensions higher than 2, sometimes the phase portrait can still be projected onto a 2-dimensional subspace, with some curves becoming pseudo-nullclines. In this work, we study cell signaling models of dimension higher than 2 with behaviors such as oscillations and bistability. Pseudo-nullclines are defined and used to qualitatively analyze the dynamics involved. Our method applies when a system can be decomposed into 2 modules, mutually coupled through 2 scalar variables. At the same time, it helps track bifurcations in a quick and efficient manner, key for understanding the different behaviors. Our results are both consistent with the expected dynamics, and also lead to new responses like excitability. Further work could test the method for other regions of parameter space and determine how to extend it to three-module systems.

2.
Sci Rep ; 13(1): 529, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36631477

ABSTRACT

In this article, we consider a double phosphorylation cycle, a ubiquitous signaling component, having the ability to display bistability, a behavior strongly related to the existence of positive feedback loops. If this component is connected to other signaling elements, it very likely undergoes some sort of protein-protein interaction. In several cases, these interactions result in a non-explicit negative feedback effect, leading to interlinked positive and negative feedbacks. This combination was studied in the literature as a way to generate relaxation-type oscillations. Here, we show that the two feedbacks together ensure two types of oscillations, the relaxation-type ones and a smoother type of oscillations functioning in a very narrow range of frequencies, in such a way that outside that range, the amplitude of the oscillations is severely compromised. Even more, we show that the two feedbacks are essential for both oscillatory types to emerge, and it is their hierarchy what determines the type of oscillation at work. We used bifurcation analyses and amplitude vs. frequency curves to characterize and classify the oscillations. We also applied the same ideas to another simple model, with the goal of generalizing what we learned from signaling models. The results obtained display the wealth of oscillatory dynamics that exists in a system with a bistable module nested within a negative feedback loop, showing how to transition between different types of oscillations and other dynamical behaviors such as excitability. Our work provides a framework for the study of other oscillatory systems based on bistable modules, from simple two-component models to more complex examples like the MAPK cascade and experimental cases like cell cycle oscillators.


Subject(s)
Feedback, Physiological , Signal Transduction , Feedback , MAP Kinase Signaling System , Phosphorylation , Models, Biological
3.
NPJ Syst Biol Appl ; 7(1): 32, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34404807

ABSTRACT

Covalent modification cycles (CMCs) are basic units of signaling systems and their properties are well understood. However, their behavior has been mostly characterized in situations where the substrate is in excess over the modifying enzymes. Experimental data on protein abundance suggest that the enzymes and their target proteins are present in comparable concentrations, leading to substrate sequestration by the enzymes. In this enzyme-in-excess regime, CMCs have been shown to exhibit signal termination, the ability of the product to return to a stationary value lower than its peak in response to constant stimulation, while this stimulation is still active, with possible implications for the ability of systems to adapt to environmental inputs. We characterize the conditions leading to signal termination in CMCs in the enzyme-in-excess regime. We also demonstrate that this behavior leads to a preferred frequency response (band-pass filters) when the cycle is subjected to periodic stimulation, whereas the literature reports that CMCs investigated so far behave as low-pass filters. We characterize the relationship between signal termination and the preferred frequency response to periodic inputs and we explore the dynamic mechanism underlying these phenomena. Finally, we describe how the behavior of CMCs is reflected in similar types of responses in the cascades of which they are part. Evidence of protein abundance in vivo shows that enzymes and substrates are present in comparable concentrations, thus suggesting that signal termination and frequency-preference response to periodic inputs are also important dynamic features of cell signaling systems, which have been overlooked.


Subject(s)
Models, Biological , Signal Transduction , Adaptation, Physiological , Proteins
4.
PLoS Comput Biol ; 16(6): e1007929, 2020 06.
Article in English | MEDLINE | ID: mdl-32497065

ABSTRACT

Negative cooperativity is a phenomenon in which the binding of a first ligand or substrate molecule decreases the rate of subsequent binding. This definition is not exclusive to ligand-receptor binding, it holds whenever two or more molecules undergo two successive binding events. Negative cooperativity turns the binding curve more graded and cannot be distinguished from two independent and different binding events based on equilibrium measurements only. The need of kinetic data for this purpose was already reported. Here, we study the binding response as a function of the amount of ligand, at different times, from very early times since ligand is added and until equilibrium is reached. Over those binding curves measured at different times, we compute the dynamic range: the fold change required in input to elicit a change from 10 to 90% of maximum output, finding that it evolves in time differently and controlled by different parameters in the two situations that are identical in equilibrium. Deciphering which is the microscopic model that leads to a given binding curve adds understanding on the molecular mechanisms at play, and thus, is a valuable tool. The methods developed in this article were tested both with simulated and experimental data, showing to be robust to noise and experimental constraints.


Subject(s)
Proteins/chemistry , Algorithms , Binding Sites , Kinetics , Ligands , Protein Binding
5.
Sci Rep ; 10(1): 5591, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32221383

ABSTRACT

Biological systems are spatially organized. This microscopic heterogeneity has been shown to produce emergent complex behaviors such as bistability. Even though the connection between spatiality and dynamic response is essential to understand biological output, its robustness and extent has not been sufficiently explored. This work focuses on a previously described system which is composed of two monostable modules acting on different cellular compartments and sharing species through linear shuttling reactions. One of the two main purposes of this paper is to quantify the frequency of occurrence of bistability throughout the parameter space and to identify which parameters and in which value ranges control the emergence and the properties of bistability. We found that a very small fraction of the sampled parameter space produced a bistable response. Most importantly, shuttling parameters were among the most influential ones to control this property. The other goal of this paper is to simplify the same system as much as possible without losing compartment-induced bistability. This procedure provided a simplified model that still connects two monostable systems by a reduced set of linear shuttling reactions that circulates all the species around the two compartments. Bistable systems are one of the main building blocks of more complex behaviors such as oscillations, memory, and digitalization. Therefore, we expect that the proposed minimal system provides insight into how these behaviors can arise from compartmentalization.

6.
Sci Rep ; 9(1): 8051, 2019 05 29.
Article in English | MEDLINE | ID: mdl-31142785

ABSTRACT

Mouse embryonic stem cells (mESCs) can be maintained as homogeneous populations in the ground state of pluripotency. Release from this state in minimal conditions allows to obtain cells that resemble those of the early post-implantation epiblast, providing an important developmental model to study cell identity transitions. However, the cell cycle dynamics of mESCs in the ground state and during its dissolution have not been extensively studied. By performing live imaging experiments of mESCs bearing cell cycle reporters, we show here that cells in the pluripotent ground state display a cell cycle structure comparable to the reported for mESCs in serum-based media. Upon release from self-renewal, the cell cycle is rapidly accelerated by a reduction in the length of the G1 phase and of the S/G2/M phases, causing an increased proliferation rate. Analysis of cell lineages indicates that cell cycle variables of sister cells are highly correlated, suggesting the existence of inherited cell cycle regulators from the parental cell. Together with a major morphological reconfiguration upon differentiation, our findings support a correlation between this in vitro model and early embryonic events.


Subject(s)
Cell Cycle/physiology , Cell Differentiation/physiology , Cell Self Renewal/physiology , Mouse Embryonic Stem Cells/physiology , Pluripotent Stem Cells/physiology , Animals , Cell Culture Techniques , Cell Line , Cell Lineage/physiology , Embryo Implantation/physiology , Intravital Microscopy , Mice , Microscopy, Confocal , Time-Lapse Imaging
7.
Sci Rep ; 8(1): 17035, 2018 11 19.
Article in English | MEDLINE | ID: mdl-30451879

ABSTRACT

Ligand-receptor systems, covalent modification cycles, and transcriptional networks are basic units of signaling systems and their steady-state properties are well understood. However, the behavior of such systems before steady-state is poorly characterized. Here, we analyzed the properties of input-output curves for each of these systems as they approach steady-state. In ligand-receptor systems, the EC50 (concentration of the ligand that occupies 50% of the receptors) is higher before the system reaches steady-state. Based on this behavior, we have previously defined PRESS (for pre-equilibrium sensing and signaling), a general "systems level" mechanism cells may use to overcome input saturation. Originally, we showed that, given a step stimulation, PRESS operates when the kinetics of ligand-receptor binding are slower than the downstream signaling steps. Now, we show that, provided the input increases slowly, it is not essential for the ligand binding reaction itself to be slow. In addition, we demonstrate that covalent modification cycles and gene expression systems may also operate in PRESS mode. Thus, nearly all biochemical processes may operate in PRESS mode, suggesting that this mechanism may be ubiquitous in cell signaling systems.


Subject(s)
Gene Expression Regulation , Signal Transduction , Ligands , Protein Binding , Transcription, Genetic
8.
PLoS One ; 12(6): e0180083, 2017.
Article in English | MEDLINE | ID: mdl-28662096

ABSTRACT

Ultrasensitive response motifs, capable of converting graded stimuli into binary responses, are well-conserved in signal transduction networks. Although it has been shown that a cascade arrangement of multiple ultrasensitive modules can enhance the system's ultrasensitivity, how a given combination of layers affects a cascade's ultrasensitivity remains an open question for the general case. Here, we introduce a methodology that allows us to determine the presence of sequestration effects and to quantify the relative contribution of each module to the overall cascade's ultrasensitivity. The proposed analysis framework provides a natural link between global and local ultrasensitivity descriptors and it is particularly well-suited to characterize and understand mathematical models used to study real biological systems. As a case study, we have considered three mathematical models introduced by O'Shaughnessy et al. to study a tunable synthetic MAPK cascade, and we show how our methodology can help modelers better understand alternative models.


Subject(s)
Signal Transduction , MAP Kinase Signaling System , Models, Biological , Models, Statistical
9.
BMC Syst Biol ; 10(1): 84, 2016 08 25.
Article in English | MEDLINE | ID: mdl-27561377

ABSTRACT

BACKGROUND: Signal transduction is the process through which cells communicate with the external environment, interpret stimuli and respond to them. This mechanism is controlled by signaling cascades, which play the role of intracellular transmitter, being able to transmit biochemical information between cell membrane and nucleus. In theory as well as in practice, it has been shown that a perturbation can propagate upstream (and not only downstream) a cascade, by a mechanism known as retroactivity. This study aims to compare the conditions on biochemical parameters which favor one or the other direction of signaling in such a cascade. RESULTS: From a mathematical point of view, we show that the steady states of a cascade of arbitrary length n are described by an iterative map of second order, meaning that the cascade tiers are actually coupled three-by-three. We study the influence of the biochemical parameters in the control of the direction of transmission - upstream and/or downstream - along a signaling cascade. A numerical and statistical approach, based on the random scan of parameters describing a 3-tier signaling cascade, provides complementary findings to the analytical study. In particular, computing the likelihood of parameters with respect to various signaling regimes, we identify conditions on biochemical parameters which enhance a specific direction of propagation corresponding to forward or retro-signaling regimes. A compact graphical representation is designed to relay the gist of these conditions. CONCLUSIONS: The values of biochemical parameters such as kinetic rates, Michaelis-Menten constants, total concentrations of kinases and of phosphatases, determine the propensity of a cascade to favor or impede downstream or upstream signal transmission. We found that generally there is an opposition between parameter sets favoring forward and retro-signaling regimes. Therefore, on one hand our study supports the idea that in most cases, retroactive effects can be neglected when a cascade which is efficient in forward signaling, is perturbed by an external ligand inhibiting the activation at some tier of the cascade. This result is relevant for therapeutic methodologies based on kinase inhibition. On the other hand, our study highlights a less-known part of the parameter space where, although the forward signaling is inefficient, the cascade can interestingly act as a retro-signaling device.


Subject(s)
Models, Biological , Signal Transduction , Kinetics , Phosphoric Monoester Hydrolases/metabolism , Phosphorylation , Protein Kinases/metabolism
10.
Proc Natl Acad Sci U S A ; 111(37): E3860-9, 2014 Sep 16.
Article in English | MEDLINE | ID: mdl-25172920

ABSTRACT

Cell signaling systems sense and respond to ligands that bind cell surface receptors. These systems often respond to changes in the concentration of extracellular ligand more rapidly than the ligand equilibrates with its receptor. We demonstrate, by modeling and experiment, a general "systems level" mechanism cells use to take advantage of the information present in the early signal, before receptor binding reaches a new steady state. This mechanism, pre-equilibrium sensing and signaling (PRESS), operates in signaling systems in which the kinetics of ligand-receptor binding are slower than the downstream signaling steps, and it typically involves transient activation of a downstream step. In the systems where it operates, PRESS expands and shifts the input dynamic range, allowing cells to make different responses to ligand concentrations so high as to be otherwise indistinguishable. Specifically, we show that PRESS applies to the yeast directional polarization in response to pheromone gradients. Consideration of preexisting kinetic data for ligand-receptor interactions suggests that PRESS operates in many cell signaling systems throughout biology. The same mechanism may also operate at other levels in signaling systems in which a slow activation step couples to a faster downstream step.


Subject(s)
Extracellular Space/metabolism , Receptors, Cell Surface/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Signal Transduction , Cell Polarity , Kinetics , Ligands , Models, Biological , Protein Binding , Time Factors
11.
Acta Biotheor ; 61(1): 59-78, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23400325

ABSTRACT

Previous studies have demonstrated that double phosphorylation of a protein can lead to bistability if some conditions are fulfilled. It was also shown that the signaling behavior of a covalent modification cycle can be quantitatively and, more importantly, qualitatively modified when this cycle is coupled to a signaling pathway as opposed to being isolated. This property was named retroactivity. These two results are studied together in this paper showing the existence of interesting phenomena--oscillations and bistability--in signaling cascades possessing at least one stage with a double-phosphorylation cycle as in MAPK cascades.


Subject(s)
MAP Kinase Signaling System , Models, Theoretical , Enzyme Stability , Phosphorylation
12.
Biochemistry ; 51(45): 9045-57, 2012 Nov 13.
Article in English | MEDLINE | ID: mdl-23088566

ABSTRACT

A reconstituted UTase/UR-PII-NRII-NRI bicyclic cascade regulated PII uridylylation and NRI phosphorylation in response to glutamine. We examined the sensitivity and robustness of the responses of the individual cycles and of the bicyclic system. The sensitivity of the glutamine response of the upstream UTase/UR-PII monocycle depended upon the PII concentration, and we show that PII exerted substrate inhibition of the UTase activity of UTase/UR, potentially contributing to this dependence of sensitivity on PII. In the downstream NRII-NRI monocycle, PII controlled NRI phosphorylation state, and the response to PII was hyperbolic at both saturating and unsaturating NRI concentration. As expected from theory, the level of NRI∼P produced by the NRII-NRI monocycle was robust to changes in the NRII or NRI concentrations when NRI was in excess over NRII, as long as the NRII concentration was above a threshold value, an example of absolute concentration robustness (ACR). Because of the parameters of the system, at physiological protein levels and ratios of NRI to NRII, the level of NRI∼P depended upon both protein concentrations. In bicyclic UTase/UR-PII-NRII-NRI systems, the NRI phosphorylation state response to glutamine was always hyperbolic, regardless of the PII concentration or sensitivity of the upstream UTase/UR-PII cycle. In these bicyclic systems, NRI phosphorylation state was only robust to variation in the PII/NRII ratio within a narrow range; when PII was in excess NRI∼P was low, and when NRII was in excess NRI phosphorylation was elevated, throughout the physiological range of glutamine concentrations. Our results show that the bicyclic system produced a graded response of NRI phosphorylation to glutamine under a range of conditions, and that under most conditions the response of NRI phosphorylation state to glutamine levels depended on the concentrations of NRI, NRII, and PII.


Subject(s)
Bacterial Proteins/metabolism , Escherichia coli Proteins/metabolism , Multienzyme Complexes/metabolism , Nitrogen/metabolism , Nucleotidyltransferases/metabolism , PII Nitrogen Regulatory Proteins/metabolism , Phosphoprotein Phosphatases/metabolism , Protein Kinases/metabolism , Signal Transduction/physiology , Transcription Factors/metabolism , Escherichia coli/metabolism , Glutamine/pharmacology , Nucleotidyltransferases/antagonists & inhibitors , PII Nitrogen Regulatory Proteins/antagonists & inhibitors , Protein Multimerization , RNA Polymerase Sigma 54/metabolism , Signal Transduction/drug effects
13.
PLoS One ; 7(7): e40806, 2012.
Article in English | MEDLINE | ID: mdl-22848403

ABSTRACT

In biochemical signaling pathways without explicit feedback connections, the core signal transduction is usually described as a one-way communication, going from upstream to downstream in a feedforward chain or network of covalent modification cycles. In this paper we explore the possibility of a new type of signaling called retroactive signaling, offered by the recently demonstrated property of retroactivity in signaling cascades. The possibility of retroactive signaling is analysed in the simplest case of the stationary states of a bicyclic cascade of signaling cycles. In this case, we work out the conditions for which variables of the upstream cycle are affected by a change of the total amount of protein in the downstream cycle, or by a variation of the phosphatase deactivating the same protein. Particularly, we predict the characteristic ranges of the downstream protein, or of the downstream phosphatase, for which a retroactive effect can be observed on the upstream cycle variables. Next, we extend the possibility of retroactive signaling in short but nonlinear signaling pathways involving a few covalent modification cycles.


Subject(s)
Models, Biological , Signal Transduction/physiology , Enzyme Activation/physiology , Phosphoprotein Phosphatases/metabolism
14.
BMC Syst Biol ; 5: 156, 2011 Oct 04.
Article in English | MEDLINE | ID: mdl-21970676

ABSTRACT

BACKGROUND: It has been shown in experimental and theoretical work that covalently modified signaling cascades naturally exhibit bidirectional signal propagation via a phenomenon known as retroactivity. An important consequence of retroactivity, which arises due to enzyme sequestration in covalently modified signaling cascades, is that a downstream perturbation can produce a response in a component upstream of the perturbation without the need for explicit feedback connections. Retroactivity may, therefore, play an important role in the cellular response to a targeted therapy. Kinase inhibitors are a class of targeted therapies designed to interfere with a specific kinase molecule in a dysregulated signaling pathway. While extremely promising as anti-cancer agents, kinase inhibitors may produce undesirable off-target effects by non-specific interactions or pathway cross-talk. We hypothesize that targeted therapies such as kinase inhibitors can produce off-target effects as a consequence of retroactivity alone. RESULTS: We used a computational model and a series of simple signaling motifs to test the hypothesis. Our results indicate that within physiologically and therapeutically relevant ranges for all parameters, a targeted inhibitor can naturally induce an off-target effect via retroactivity. The kinetics governing covalent modification cycles in a signaling network were more important for propagating an upstream off-target effect in our models than the kinetics governing the targeted therapy itself. Our results also reveal the surprising and crucial result that kinase inhibitors have the capacity to turn "on" an otherwise "off" parallel cascade when two cascades share an upstream activator. CONCLUSIONS: A proper and detailed characterization of a pathway's structure is important for identifying the optimal protein to target as well as what concentration of the targeted therapy is required to modulate the pathway in a safe and effective manner. We believe our results support the position that such characterizations should consider retroactivity as a robust potential source of off-target effects induced by kinase inhibitors and other targeted therapies.


Subject(s)
Metabolic Networks and Pathways , Models, Biological , Protein Kinase Inhibitors/metabolism , Computer Simulation , Signal Transduction , Systems Biology
15.
Sci Signal ; 4(194): ra67, 2011 Oct 11.
Article in English | MEDLINE | ID: mdl-21990429

ABSTRACT

Biological signal transduction networks are commonly viewed as circuits that pass along information--in the process amplifying signals, enhancing sensitivity, or performing other signal-processing tasks--to transcriptional and other components. Here, we report on a "reverse-causality" phenomenon, which we call load-induced modulation. Through a combination of analytical and experimental tools, we discovered that signaling was modulated, in a surprising way, by downstream targets that receive the signal and, in doing so, apply what in physics is called a load. Specifically, we found that non-intuitive changes in response dynamics occurred for a covalent modification cycle when load was present. Loading altered the response time of a system, depending on whether the activity of one of the enzymes was maximal and the other was operating at its minimal rate or whether both enzymes were operating at submaximal rates. These two conditions, which we call "limit regime" and "intermediate regime," were associated with increased or decreased response times, respectively. The bandwidth, the range of frequency in which the system can process information, decreased in the presence of load, suggesting that downstream targets participate in establishing a balance between noise-filtering capabilities and a circuit's ability to process high-frequency stimulation. Nodes in a signaling network are not independent relay devices, but rather are modulated by their downstream targets.


Subject(s)
Enzymes/metabolism , Feedback, Physiological/physiology , Models, Biological , Signal Transduction/physiology , Allosteric Regulation/physiology , Escherichia coli/metabolism , Nucleotidyltransferases/metabolism , PII Nitrogen Regulatory Proteins/metabolism , Systems Biology , Time Factors
16.
Cancer Res ; 71(20): 6338-49, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21862636

ABSTRACT

Understanding the molecular alterations that confer cancer cells with motile, metastatic properties is needed to improve patient survival. Here, we report that p38γ motogen-activated protein kinase regulates breast cancer cell motility and metastasis, in part, by controlling expression of the metastasis-associated small GTPase RhoC. This p38γ-RhoC regulatory connection was mediated by a novel mechanism of modulating RhoC ubiquitination. This relationship persisted across multiple cell lines and in clinical breast cancer specimens. Using a computational mechanical model based on the finite element method, we showed that p38γ-mediated cytoskeletal changes are sufficient to control cell motility. This model predicted novel dynamics of leading edge actin protrusions, which were experimentally verified and established to be closely related to cell shape and cytoskeletal morphology. Clinical relevance was supported by evidence that elevated expression of p38γ is associated with lower overall survival of patients with breast cancer. Taken together, our results offer a detailed characterization of how p38γ contributes to breast cancer progression. Herein we present a new mechanics-based analysis of cell motility, and report on the discovery of a leading edge behavior in motile cells to accommodate modified cytoskeletal architecture. In summary, these findings not only identify a novel mechanism for regulating RhoC expression but also advance p38γ as a candidate therapeutic target.


Subject(s)
Breast Neoplasms/pathology , Cell Movement , Cytoskeleton/metabolism , Mitogen-Activated Protein Kinase 12/metabolism , rho GTP-Binding Proteins/metabolism , Animals , Breast Neoplasms/enzymology , Breast Neoplasms/genetics , Computer Simulation , Female , Gene Expression Regulation, Neoplastic , Humans , Lymphatic Metastasis , Mice , Mitogen-Activated Protein Kinase 12/genetics , Models, Biological , Neoplasm Invasiveness , rhoC GTP-Binding Protein
17.
Biophys J ; 100(7): 1617-26, 2011 Apr 06.
Article in English | MEDLINE | ID: mdl-21463574

ABSTRACT

Signaling pathways consisting of phosphorylation/dephosphorylation cycles with no explicit feedback allow signals to propagate not only from upstream to downstream but also from downstream to upstream due to retroactivity at the interconnection between phosphorylation/dephosphorylation cycles. However, the extent to which a downstream perturbation can propagate upstream in a signaling cascade and the parameters that affect this propagation are presently unknown. Here, we determine the downstream-to-upstream steady-state gain at each stage of the signaling cascade as a function of the cascade parameters. This gain can be made smaller than 1 (attenuation) by sufficiently fast kinase rates compared to the phosphatase rates and/or by sufficiently large Michaelis-Menten constants and sufficiently low amounts of total stage protein. Numerical studies performed on sets of biologically relevant parameters indicated that ∼50% of these parameters could give rise to amplification of the downstream perturbation at some stage in a three-stage cascade. In an n-stage cascade, the percentage of parameters that lead to an overall attenuation from the last stage to the first stage monotonically increases with the cascade length n and reaches 100% for cascades of length at least 6.


Subject(s)
Feedback, Physiological , Signal Transduction , Computer Simulation , Models, Biological , Phosphorylation
18.
Cancer Res ; 71(6): 2360-70, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21406404

ABSTRACT

Increased levels of EZH2, a critical regulator of cellular memory, signal the presence of metastasis and poor outcome in breast cancer patients. High levels of EZH2 are associated with nuclear pleomorphism, lack of estrogen receptor expression, and decreased nuclear levels of BRCA1 tumor suppressor protein in invasive breast carcinomas. The mechanism by which EZH2 overexpression promotes the growth of poorly differentiated invasive carcinomas remains to be defined. Here, we show that EZH2 controls the intracellular localization of BRCA1 protein. Conditional doxycycline-induced upregulation of EZH2 in benign mammary epithelial cells results in nuclear export of BRCA1 protein, aberrant mitoses with extra centrosomes, and genomic instability. EZH2 inhibition in CAL51 breast cancer cells induces BRCA1 nuclear localization and rescues defects in ploidy and mitosis. Mechanistically, EZH2 overexpression is sufficient for activation of the phosphoinositide 3-kinase/Akt (PI3K/Akt) pathway specifically through activation of Akt isoform 1. EZH2-induced BRCA1 nuclear export, aneuploidy, and mitotic defects were prevented by treatment with the PI3K inhibitors LY294002 or wortmannin. Targeted inhibition of Akt-1, Akt-2, and Akt-3 isoforms revealed that the EZH2-induced phenotype requires specific activation of Akt-1. The relevance of our studies to human breast cancer is highlighted by the finding that high EZH2 protein levels are associated with upregulated expression of phospho-Akt-1 (Ser473) and decreased nuclear expression of phospho-BRCA1 (Ser1423) in 39% of invasive breast carcinomas. These results enable us to pinpoint one mechanism by which EZH2 regulates BRCA1 expression and genomic stability mediated by the PI3K/Akt-1 pathway.


Subject(s)
BRCA1 Protein/metabolism , DNA-Binding Proteins/metabolism , Genomic Instability , Proto-Oncogene Proteins c-akt/metabolism , Transcription Factors/metabolism , Active Transport, Cell Nucleus/drug effects , Androstadienes/pharmacology , Blotting, Western , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line , Cell Line, Tumor , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Chromones/pharmacology , Cytoplasm/drug effects , Cytoplasm/metabolism , DNA-Binding Proteins/genetics , Enhancer of Zeste Homolog 2 Protein , Enzyme Inhibitors/pharmacology , Female , Histone Methyltransferases , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Microscopy, Fluorescence , Mitosis/drug effects , Morpholines/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation , Polycomb Repressive Complex 2 , Protein Isoforms/genetics , Protein Isoforms/metabolism , Proto-Oncogene Proteins c-akt/genetics , RNA Interference , Signal Transduction/drug effects , Transcription Factors/genetics , Wortmannin
19.
PLoS One ; 5(12): e14029, 2010 Dec 13.
Article in English | MEDLINE | ID: mdl-21179196

ABSTRACT

Phosphorylation-triggered degradation is a common strategy for elimination of regulatory proteins in many important cell signaling processes. Interesting examples include cyclin-dependent kinase inhibitors such as p27 in human and Sic1 in yeast, which play crucial roles during the G1/S transition in the cell cycle. In this work, we have modeled and analyzed the dynamics of multisite-phosphorylation-triggered protein degradation systematically. Inspired by experimental observations on the Sic1 protein and a previous intriguing theoretical conjecture, we develop a model to examine in detail the degradation dynamics of a protein featuring multiple phosphorylation sites and a threshold site number for elimination in response to a kinase signal. Our model explains the role of multiple phosphorylation sites, compared to a single site, in the regulation of protein degradation. A single-site protein cannot convert a graded input of kinase increase to much sharper output, whereas multisite phosphorylation is capable of generating a highly switch-like temporal profile of the substrate protein with two characteristics: a temporal threshold and rapid decrease beyond the threshold. We introduce a measure termed temporal response coefficient to quantify the extent to which a response in the time domain is switch-like and further investigate how this property is determined by various factors including the kinase input, the total number of sites, the threshold site number for elimination, the order of phosphorylation, the kinetic parameters, and site preference. Some interesting and experimentally verifiable predictions include that the non-degradable fraction of the substrate protein exhibits a more switch-like temporal profile; a sequential system is more switch-like, while a random system has the advantage of increased robustness; all the parameters, including the total number of sites, the threshold site number for elimination and the kinetic parameters synergistically determine the exact extent to which the degradation profile is switch-like. Our results suggest design principles for protein degradation switches which might be a widespread mechanism for precise regulation of cellular processes such as cell cycle progression.


Subject(s)
Cyclin-Dependent Kinase Inhibitor Proteins/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Animals , Binding Sites , Cell Cycle , Cyclin-Dependent Kinase Inhibitor Proteins/metabolism , Gene Expression Regulation , Humans , Kinetics , MAP Kinase Signaling System , Models, Biological , Phosphorylation , Protein Binding , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Signal Transduction
20.
Article in English | MEDLINE | ID: mdl-21096609

ABSTRACT

The complexity of biological systems is often prohibitive in testing specific hypotheses from first physical principles. To circumvent these limitations we used biological data to inform a mathematical model of breast cancer cell motility. Using this in silico model we were able to accurately assess the influence of actin cytoskeletal architecture on the motility of a genetically modified breast cancer cell line. Furthermore, using the in silico model revealed a biological phenomenon that has not been previously described in live cell movement. Fusing biology and mathematics as presented here represents a new direction for biomedical research in which advances in each field synergistically drive discoveries in the other.


Subject(s)
Breast Neoplasms/pathology , Breast Neoplasms/physiopathology , Cytoskeleton/metabolism , Mechanotransduction, Cellular , Models, Biological , p38 Mitogen-Activated Protein Kinases/metabolism , Cell Line, Tumor , Cell Movement , Computer Simulation , Humans , Neoplasm Invasiveness/pathology , Neoplasm Invasiveness/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...