Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(12): e2316878121, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38466851

ABSTRACT

Deep sea cold seeps are sites where hydrogen sulfide, methane, and other hydrocarbon-rich fluids vent from the ocean floor. They are an important component of Earth's carbon cycle in which subsurface hydrocarbons form the energy source for highly diverse benthic micro- and macro-fauna in what is otherwise vast and spartan sea scape. Passive continental margin cold seeps are typically attributed to the migration of hydrocarbons generated from deeply buried source rocks. Many of these seeps occur over salt tectonic provinces, where the movement of salt generates complex fault systems that can enable fluid migration or create seals and traps associated with reservoir formation. The elevated advective heat transport of the salt also produces a chimney effect directly over these structures. Here, we provide geophysical and geochemical evidence that the salt chimney effect in conjunction with diapiric faulting drives a subsurface groundwater circulation system that brings dissolved inorganic carbon, nutrient-rich deep basinal fluids, and potentially overlying seawater onto the crests of deeply buried salt diapirs. The mobilized fluids fuel methanogenic archaea locally enhancing the deep biosphere. The resulting elevated biogenic methane production, alongside the upward heat-driven fluid transport, represents a previously unrecognized mechanism of cold seep formation and regulation.

2.
Proc Natl Acad Sci U S A ; 104(36): 14260-5, 2007 Sep 04.
Article in English | MEDLINE | ID: mdl-17726114

ABSTRACT

Highly cracked and isomerized archaeal lipids and bacterial lipids, structurally changed by thermal stress, are present in solvent extracts of 2,707- to 2,685-million-year-old (Ma) metasedimentary rocks from Timmins, ON, Canada. These lipids appear in conventional gas chromatograms as unresolved complex mixtures and include cyclic and acyclic biphytanes, C36-C39 derivatives of the biphytanes, and C31-C35 extended hopanes. Biphytane and extended hopanes are also found in high-pressure catalytic hydrogenation products released from solvent-extracted sediments, indicating that archaea and bacteria were present in Late Archean sedimentary environments. Postdepositional, hydrothermal gold mineralization and graphite precipitation occurred before metamorphism (approximately 2,665 Ma). Late Archean metamorphism significantly reduced the kerogen's adsorptive capacity and severely restricted sediment porosity, limiting the potential for post-Archean additions of organic matter to the samples. Argillites exposed to hydrothermal gold mineralization have disproportionately high concentrations of extractable archaeal and bacterial lipids relative to what is releasable from their respective high-pressure catalytic hydrogenation product and what is observed for argillites deposited away from these hydrothermal settings. The addition of these lipids to the sediments likely results from a Late Archean subsurface hydrothermal biosphere of archaea and bacteria.


Subject(s)
Archaea/genetics , Evolution, Molecular , Temperature , Water/metabolism , Archaea/chemistry , Archaea/metabolism , Archaea/ultrastructure , Carbon/chemistry , Carbon/metabolism , Catalysis , Chromatography, Gas , Fossils , Graphite/chemistry , Graphite/metabolism , Hydrocarbons/metabolism , Hydrogen/metabolism , Lipid Metabolism , Microscopy, Electron, Scanning , Molecular Structure , Organic Chemicals/chemistry , Organic Chemicals/metabolism , Time Factors
3.
Proc Natl Acad Sci U S A ; 100(22): 12554-8, 2003 Oct 28.
Article in English | MEDLINE | ID: mdl-14551322

ABSTRACT

A pseudohomologous series of branched aliphatic alkanes with a quaternary substituted carbon atom (BAQCs, specifically 2,2-dimethylalkanes and 3,3- and 5,5-diethylalkanes) were identified in warm (65 degrees C) deep-sea hydrothermal waters and Late Cretaceous black shales. 5,5-Diethylalkanes were also observed in modern and Holocene marine shelf sediments and in shales spanning the last 800 million years of the geological record. The carbon number distribution of BAQCs indicates a biological origin. These compounds were observed but not identified in previous studies of 2.0 billion- to 2.2 billion-year-old metasediments and were commonly misidentified in other sediment samples, indicating that BAQCs are widespread in the geological record. The source organisms of BAQCs are unknown, but their paleobiogeographic distribution suggests that they have an affinity for sulfides and might be nonphotosynthetic sulfide oxidizers.


Subject(s)
Alkanes/chemistry , Geologic Sediments/analysis , Geology , Chromatography, Ion Exchange/methods , Gas Chromatography-Mass Spectrometry , Geological Phenomena , Seawater/analysis , Spectroscopy, Fourier Transform Infrared/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...