Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Epidemics ; 38: 100544, 2022 03.
Article in English | MEDLINE | ID: mdl-35240545

ABSTRACT

To contain the propagation of emerging diseases that are transmissible from human to human, non-pharmaceutical interventions (NPIs) aimed at reducing the interactions between humans are usually implemented. One example of the latter kind of measures is social distancing, which can be either policy-driven or can arise endogenously in the population as a consequence of the fear of infection. However, if NPIs are lifted before the population reaches herd immunity, further re-introductions of the pathogen would lead to secondary infections. Here we study the effects of different social distancing schemes on the large scale spreading of diseases. Specifically, we generalize metapopulation models to include social distancing mechanisms at the subpopulation level and model short- and long-term strategies that are fed with local or global information about the epidemics. We show that different model ingredients might lead to very diverse outcomes in different subpopulations. Our results suggest that there is not a unique answer to the question of whether contention measures are more efficient if implemented and managed locally or globally and that model outcomes depends on how the full complexity of human interactions is taken into account.


Subject(s)
COVID-19 , Epidemics , COVID-19/epidemiology , Humans , Immunity, Herd , Physical Distancing
2.
Phys Rev E ; 102(2-1): 022312, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32942384

ABSTRACT

Nowadays, one of the challenges we face when carrying out modeling of epidemic spreading is to develop methods to control disease transmission. In this article we study how the spreading of knowledge of a disease affects the propagation of that disease in a population of interacting individuals. For that, we analyze the interaction between two different processes on multiplex networks: the propagation of an epidemic using the susceptible-infected-susceptible dynamics and the dissemination of information about the disease-and its prevention methods-using the unaware-aware-unaware dynamics, so that informed individuals are less likely to be infected. Unlike previous related models where disease and information spread at the same time scale, we introduce here a parameter that controls the relative speed between the propagation of the two processes. We study the behavior of this model using a mean-field approach that gives results in good agreement with Monte Carlo simulations on homogeneous complex networks. We find that increasing the rate of information dissemination reduces the disease prevalence, as one may expect. However, increasing the speed of the information process as compared to that of the epidemic process has the counterintuitive effect of increasing the disease prevalence. This result opens an interesting discussion about the effects of information spreading on disease propagation.


Subject(s)
Epidemics/statistics & numerical data , Models, Statistical , Health Knowledge, Attitudes, Practice , Humans , Monte Carlo Method , Prevalence
SELECTION OF CITATIONS
SEARCH DETAIL
...