Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Prod Res ; 24(7): 599-609, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20401791

ABSTRACT

Consumption of fruits and vegetables has been associated with a low incidence of cardiovascular and other chronic diseases. The present study was aimed at evaluating the protective effects of fresh apple extract (AE) on human umbilical vein endothelial cells (HUVEC) exposed to cytotoxic glycated protein (GFBS)/iron (FeCl(3)) chelate. The experimental design comprised 10 groups with 5 flasks in each group. Group I was treated with 15% foetal bovine serum (FBS). Groups II, III and IV were treated with GFBS (70 microM), FBS + FeCl(3) (20 microM), and GFBS + FeCl(3), respectively. The other six groups were as follows: Group V, GFBS + AE (100 microg); Group VI, FBS + FeCl(3) + AE (100 microg); Group VII, GFBS + FeCl(3) + AE (100 microg); Group VIII, GFBS + AE (250 microg); Group IX, FBS + FeCl(3) + AE (250 microg); and Group X, GFBS + FeCl(3) + AE (250 microg). After 24 h incubation, cells were collected from all the experimental groups and assessed for lipid peroxidation (LPO) and activities of the antioxidant enzymes cytochrome c reductase and glutathione S-transferase (GST). HUVEC incubated with glycated protein (GFBS) either alone or combined with iron chelate showed a significant (p < 0.001) elevation of LPO accompanied by depletion of superoxide dismutase, catalase, glutathione peroxidase (GPx) and glutathione reductase (GR), in addition to increased microsomal cytochrome c reductase and decreased GST activities. Treatment of GFBS- or GFBS + FeCl(3)-exposed HUVEC with AE at 100 or 250 microg significantly decreased the level of LPO and returned the levels of antioxidants cytochrome c reductase and GST to near normal in a dose-dependent manner. The extracts recovered viability of HUVEC damaged by GFBS-iron treatment in a concentration-dependent manner. These findings suggest a protective effect of AE on HUVEC against glycated protein/iron chelate-induced toxicity, which suggests that AE could exert a beneficial effect by preventing diabetic angiopathies.


Subject(s)
Endothelial Cells/drug effects , Glycoproteins/toxicity , Malus/chemistry , Plant Extracts/pharmacology , Umbilical Veins/cytology , Cell Line , Glycation End Products, Advanced/toxicity , Humans , Lipid Peroxides/metabolism , Plant Extracts/chemistry
2.
Phytother Res ; 24(1): 54-9, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19548280

ABSTRACT

Astaxanthin (ASX), a red carotenoid pigment with no pro-vitamin A activity, is a biological antioxidant that occurs naturally in a wide variety of plants, algae and seafoods. This study investigated whether ASX could inhibit glycated protein/iron chelate-induced toxicity in human umbilical-vein endothelial cells (HUVEC) by interfering with ROS generation in these cells. Glycated fetal bovine serum (GFBS) was prepared by incubating fetal bovine serum (FBS) with high-concentration glucose. Stimulation of cultured HUVECs with 50 mm 1 mL of GFBS significantly enhanced lipid peroxidation and decreased antioxidant enzyme activities and levels of phase II enzymes. However, preincubation of the cultures with ASX resulted in a marked decrease in the level of lipid peroxide (LPO) and an increase in the levels of antioxidant enzymes in an ASX concentration-dependent manner. These results demonstrate that ASX could inhibit LPO formation and enhance the antioxidant enzyme status in GFBS/iron chelate-exposed endothelial cells by suppressing ROS generation, thereby limiting the effects of the AGE-RAGE interaction. The results indicate that ASX could have a beneficial role against glycated protein/iron chelate-induced toxicity by preventing lipid and protein oxidation and increasing the activity of antioxidant enzymes.


Subject(s)
Antioxidants/metabolism , Endothelial Cells/drug effects , Lipid Peroxidation/drug effects , Cell Line , Humans , Iron Chelating Agents , Lipid Peroxides/metabolism , Oxidative Stress , Oxidoreductases/metabolism , Reactive Oxygen Species/metabolism , Umbilical Veins/cytology , Xanthophylls/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...