Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biosci Bioeng ; 121(2): 191-5, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26134447

ABSTRACT

A 6-L sequencing batch reactor (SBR) was operated for development of granular sludge capable of denitrification of high strength nitrates. Complete and stable denitrification of up to 5420 mg L(-1) nitrate-N (2710 mg L(-1) nitrate-N in reactor) was achieved by feeding simulated nitrate waste at a C/N ratio of 3. Compact and dense denitrifying granular sludge with relatively stable microbial community was developed during reactor operation. Accumulation of large amounts of nitrite due to incomplete denitrification occurred when the SBR was fed with 5420 mg L(-1) NO3-N at a C/N ratio of 2. Complete denitrification could not be achieved at this C/N ratio, even after one week of reactor operation as the nitrite levels continued to accumulate. In order to improve denitrification performance, the reactor was fed with nitrate concentrations of 1354 mg L(-1), while keeping C/N ratio at 2. Subsequently, nitrate concentration in the feed was increased in a step-wise manner to establish complete denitrification of 5420 mg L(-1) NO3-N at a C/N ratio of 2. The results show that substrate concentration plays an important role in denitrification of high strength nitrate by influencing nitrite accumulation. Complete denitrification of high strength nitrates can be achieved at lower substrate concentrations, by an appropriate acclimatization strategy.


Subject(s)
Bioreactors , Nitrates/isolation & purification , Sewage/chemistry , Carbon/metabolism , Denitrification , Nitrates/metabolism , Nitrites/metabolism , Nitrogen/metabolism
2.
FEMS Microbiol Lett ; 359(1): 110-5, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25135363

ABSTRACT

Dibutyl phosphite, an organophosphorous compound, finds applications in different chemical industries and processes. Here, we report an efficient approach of biodegradation to be eventually used in bioremediation of dibutyl phosphite. Aerobic granules capable of dibutyl phosphite biodegradation were cultivated in a sequencing batch reactor (SBR). The SBR was operated with a 24-h cycle by feeding with dibutyl phosphite as a cosubstrate along with acetate. During the course of the SBR operation, aerobic granules of 0.9 ± 0.3 mm size were developed. Complete biodegradation of 1.4, 2 and 3 mM of dibutyl phosphite was achieved in 4, 5 and 8 h, respectively, accompanied by stoichiometric release of phosphite (H3 PO3). Phosphatase activity in the dibutyl phosphite-degrading granular biomass was 3- and 1.5-fold higher as compared to the activated sludge (seed biomass) and acetate-fed aerobic granules, respectively, indicating involvement in the hydrolysis of dibutyl phosphite. Microbial community analysis by t-RFLP showed the presence of 12 different bacterial types. Two bacterial strains capable of growth on dibutyl phosphite as sole carbon source were isolated and characterized as Acidovorax sp. and Sphingobium sp. The results show that aerobic microbial granules based process is suitable for the treatment of dibutyl phosphite contaminated water.


Subject(s)
Esters/metabolism , Organophosphates/metabolism , Phosphites/metabolism , Sewage/microbiology , Acetates/metabolism , Aerobiosis , Bacteria/classification , Bacteria/genetics , Bioreactors/microbiology , Biota , Biotransformation , Metagenomics , Polymorphism, Restriction Fragment Length
SELECTION OF CITATIONS
SEARCH DETAIL
...