Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 20(8): 6091-6096, 2020 08 12.
Article in English | MEDLINE | ID: mdl-32628493

ABSTRACT

Radiation greatly exceeding blackbody between two objects separated by microscale distances has attracted great interest. However, challenges in reaching such a small separation between two plates have so far prevented studies below a separation distance of about 25 nm. Here, we report a study of radiation enhancement in the near-field regime of less than 10 nm between two parallel plates. We make use of bulk, rigid plates to approach small separation distances without the adverse snap-in effect, develop embedded temperature sensors to allow near-zero separation, and employ advanced sensing method to level the plates and approach and maintain small separations. Our findings agree with theoretical predictions between parallel surfaces with separations down to 7 nm where an 18000 times enhancement in radiation between two quartz plates is observed. Our method can also be used to explore heat transfer between other materials and can possibly be extended to smaller separation gaps.

2.
Nano Lett ; 19(3): 1955-1962, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30753783

ABSTRACT

Tellurium (Te) is an intrinsically p-type-doped narrow-band gap semiconductor with an excellent electrical conductivity and low thermal conductivity. Bulk trigonal Te has been theoretically predicted and experimentally demonstrated to be an outstanding thermoelectric material with a high value of thermoelectric figure-of-merit ZT. In view of the recent progress in developing the synthesis route of 2D tellurium thin films as well as the growing trend of exploiting nanostructures as thermoelectric devices, here for the first time, we report the excellent thermoelectric performance of tellurium nanofilms, with a room-temperature power factor of 31.7 µW/cm K2 and ZT value of 0.63. To further enhance the efficiency of harvesting thermoelectric power in nanofilm devices, thermoelectrical current mapping was performed with a laser as a heating source, and we found that high work function metals such as palladium can form rare accumulation-type metal-to-semiconductor contacts to Te, which allows thermoelectrically generated carriers to be collected more efficiently. High-performance thermoelectric Te devices have broad applications as energy harvesting devices or nanoscale Peltier coolers in microsystems.

3.
ACS Nano ; 12(5): 4861-4867, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29684270

ABSTRACT

Black phosphorus, a recently intensely investigated two-dimensional material, is promising for electronic and optoelectronic applications due to its higher mobility and thickness-dependent direct band gap. With its low direct band gap and anisotropic properties in nature, black phosphorus is also suitable for near-infrared polarization-sensitive photodetection. To enhance photoresponsivity of a black phosphorus based photodetector, we demonstrate two designs of plasmonic structures. In the first design, plasmonic bowtie antennas are used to increase the photocurrent, particularly in the armchair direction, where the optical absorption is higher than that in the zigzag direction. The simulated electric field distribution with bowtie structures shows enhanced optical absorption by localized surface plasmons. In the second design, bowtie apertures are used to enhance the inherent polarization selectivity of black phosphorus. A high photocurrent ratio (armchair to zigzag) of 8.7 is obtained. We choose a near-infrared wavelength of 1550 nm to demonstrate the photosensitivity enhancement and polarization selectivity, as it is useful for applications including telecommunication, remote sensing, biological imaging, and infrared polarimetry imaging.

SELECTION OF CITATIONS
SEARCH DETAIL
...