Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
J Inorg Biochem ; 194: 74-84, 2019 05.
Article in English | MEDLINE | ID: mdl-30831392

ABSTRACT

Organometallic Ru(II)-arene complexes have emerged as potential alternatives to platinum appended agents due to their wide range of interesting features such as stability in solution and solid, significant activity, less toxicity and hydrophobic property of arene moiety, etc. Hence, a series of Ru(II)-p-cymene complexes, [(η6-p-cymene)Ru(η2-N,N-L1)Cl]Cl (1), [(η6-p-cymene)Ru(η1-N-L2)Cl2] (2) and [(η6-p-cymene)Ru(η1-N-L3)Cl2] (3) were prepared from pyrazole based ligands [2-(1H-pyrazol-3-yl)pyridine (L1), 3-(furan-2-yl)-1H-pyrazole (L2) and 3-(thiophen-2-yl)-1H-pyrazole (L3)], and [RuCl2-(η6-p-cymene)] dimer. The new Ru(II)-p-cymene complexes were well characterized by elemental analysis, and spectroscopic (FT-IR, UV-Visible, 1H NMR, 13C NMR and mass) and crystallographic methods. The Ru(II)-p-cymene complexes (1-3) were found to adopt their characteristic piano stool geometry around Ru(II) ion. The calf thymus DNA (CT-DNA) binding ability of the new complexes was investigated by electronic absorption spectroscopic titration and viscosity methods. The molecular docking study results showed that complex 1 strongly bound with targeted biomolecules than 2 and 3. Docked poses of bidentate pyrazole based Ru(II)-p-cymene complex 1 revealed that the complex formed a crucial guanine N7 position hydrogen bond with DNA receptor. Complexes 1-3 might hydrolyze under physiological conditions and form aqua complexes 4-8, and docking calculations showed that the aqua complexes bound strongly with the receptors than original complexes. The in vitro cytotoxicity of the Ru(II)-p-cymene complexes and cisplatin was evaluated against triple negative breast cancer (TNBC) MDA-MB-231 cells. Our results showed that the inhibitory effect of bidentate pyrazole based Ru(II)-p-cymene complex 1 on the growth of breast cancer cells was superior to other tested complexes.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , DNA/metabolism , Pyrazoles/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Cattle , Cell Line, Tumor , Cell Survival/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/metabolism , Cymenes/chemistry , DNA/chemistry , Guanine/chemistry , Humans , Intercalating Agents/chemical synthesis , Intercalating Agents/metabolism , Intercalating Agents/pharmacology , Ligands , Molecular Docking Simulation , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/metabolism , Ruthenium/chemistry
2.
Sci Rep ; 9(1): 2721, 2019 02 25.
Article in English | MEDLINE | ID: mdl-30804454

ABSTRACT

Two cobalt(III) Schiff base complexes, trans-[Co(salen)(DA)2](ClO4) (1) and trans-[Co(salophen)(DA)2](ClO4) (2) (where salen: N,N'-bis(salicylidene)ethylenediamine, salopen: N,N'-bis(salicylidene)-1,2-phenylenediamine, DA: dodecylamine) were synthesised and characterised using various spectroscopic and analytical techniques. The binding affinity of both the complexes with CT-DNA was explored adopting UV-visible, fluorescence, circular dichroism spectroscopy and cyclic voltammetry techniques. The results revealed that both the complexes interacted with DNA via intercalation as well as notable groove binding. Protein (BSA) binding ability of these complexes was investigated by absorption and emission spectroscopy which indicate that these complexes engage in strong hydrophobic interaction with BSA. The mode of interaction between these complexes and CT-DNA/BSA was studied by molecular docking analysis. The in vitro cytotoxic property of the complexes was evaluated in A549 (human small cell lung carcinoma) and VERO (African green monkey kidney cells). The results revealed that the complexes affect viability of the cells. AO and EB staining and cell cycle analysis revealed that the mode of cell death is apoptosis. Both the complexes showed profound inhibition of angiogenesis as revealed in in-vivo chicken chorioallantoic membrane (CAM) assay. Of the two complexes, the complex 2 proved to be much more efficient in affecting the viability of lung cancer cells than complex 1. These results indicate that the cobalt(III) Schiff base complexes in this study can be potentially used for cancer chemotherapy and as inhibitor of angiogenesis, in general, and lung cancer in particular, for which there is need for substantiation at the level of signalling mechanisms and gene expressions.


Subject(s)
Antineoplastic Agents/pharmacology , Cobalt/pharmacology , Coordination Complexes/pharmacology , Intercalating Agents/pharmacology , Schiff Bases/pharmacology , A549 Cells , Animals , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Chlorocebus aethiops , Cobalt/chemistry , Coordination Complexes/chemistry , DNA/chemistry , DNA/metabolism , Humans , Intercalating Agents/chemistry , Molecular Docking Simulation , Neoplasms/drug therapy , Neoplasms/metabolism , Schiff Bases/chemistry , Vero Cells
3.
RSC Adv ; 9(25): 14544-14557, 2019 May 07.
Article in English | MEDLINE | ID: mdl-35519310

ABSTRACT

Herein, we have synthesized 4,5-diphenyl-1H-imidazole and 2-(1H-indol-3-yl)acetonitrile based donor-π-acceptor fluorophores and studied their optical, thermal, electroluminescence properties. Both the fluorophores exhibit high fluorescence quantum yield (Φ f = <0.6) and good thermal stability (T d10 = <300 °C), and could be excellent candidates for OLED applications. Moreover, the ground and excited state properties of the compounds were analysed in various solvents with different polarities. The geometric and electronic structures of the fluorophores in the ground and excited states have been studied using density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. The absorption of BIPIAN and BITIAN in various solvents corresponds to S0 → S1 transitions and the most intense bands with respect to the higher oscillator strengths are mainly contributed by HOMO → LUMO transition. Significantly, the vacuum deposited non-doped OLED device was fabricated using BITIAN as an emitter, and the device shows electroluminescence (EL) at 564 nm, maximum current efficiency (CE) 0.687 cd A-1 and a maximum external quantum efficiency (EQE) of 0.24%.

4.
ACS Omega ; 3(11): 15657-15665, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30556010

ABSTRACT

Aedes aegypti is a mosquito vector that spreads dengue fever and yellow fever worldwide in tropical and subtropical countries. Essential oil isolated from Artemisia vulgaris is found to have larvicidal and repellent action against this vector. The dried leaves were subjected to hydrodistillation using a clevenger-type apparatus for 4 h. The isolated essential oil was analyzed by using gas chromatography-mass spectrometry, and the major insecticidal compounds were identified as α-humulene (0.72%), ß-caryophyllene (0.81%), and caryophyllene oxide (15.87%). Larvicidal activity results revealed that the essential oil exposure for 24 h period against the third stage larvae was LC50 = 6.87, LC90 = 59.197 ppm and for the fourth stage larvae LC50 = 4.269, LC90 = 50.363 ppm. Highest mortality rates were observed at 24 h exposure period of third and fourth stages, and the exposed A. aegypti larvae were subjected to histo chemical studies, and the studies revealed that larvae cells got totally damaged (midgut and cortex). The repellent activity results revealed that at 50% concentration of the essential oil showed the highest repellent activity at 60 min protection time against the A. aegypti female mosquitoes. To gain further insights into the insecticidal activity, density functional theory and molecular docking calculations were performed with the active components of this essential oil as the ligand and NS3 protease domain (PDB ID: 2FOM) as a receptor. Molecular docking calculation results show that (E)-ß-caryophyllene strongly binds with NS3 protease domain than (Z)-ß-caryophyllene, α-humulene, and ß-caryophyllene oxide and is the major active component for the insecticidal action. It primarily interacts with the receptor through hydrophobic and ionic forces and using water bridges between the amino acid residues in the binding pocket and (E)-ß-caryophyllene.

5.
Inorg Chem ; 57(12): 6833-6846, 2018 Jun 18.
Article in English | MEDLINE | ID: mdl-29873234

ABSTRACT

Bonding and reactivity of [(RN4)Pd nCH3X]( n-2)+ complexes have been investigated at the M06/BS2//B3LYP/BS1 level. Feasible mechanisms for the unselective formation of ethane and methyl chloride from mono-methyl PdIII complexes and selective formation of ethane or methyl chloride from PdIV complexes are reported here. Density functional theory (DFT) results indicate that PdIV is more reactive than PdIII and Pd in different oxidation states that follow different mechanisms. PdIII complexes react in three steps: (i) conformational change, (ii) transmetalation, and (iii) reductive elimination. In the first step a five-coordinate PdIII intermediate is formed by the cleavage of one Pd-Nax bond, and in the second step one methyl group is transferred from the PdIII complex to the above intermediate via transmetalation, and subsequently a six-coordinate PdIV intermediate is formed by disproportion. In this step, transmetalation can occur on both singlet and triplet surfaces, and the singlet surface is lying lower. Transmetalation can also occur between the above intermediate and [(RN4)PdII(CH3)(CH3CN) ]+, but this not a feasible path. In the third step this PdIV intermediate undergoes reductive elimination of ethane and methyl chloride unselectively, and there are three possible routes for this step. Here axial-equatorial elimination is more facile than equatorial-equatorial elimination. PdIV complexes react in two steps, a conformational change followed by reductive elimination, selectively forming ethane or methyl chloride. Thus, PdIII complex reacts through a six-coordinate PdIV intermediate that has competing C-C and C-Cl bond formation, and PdIV complex reacts through a five-coordinate PdIV intermediate that has selective C-C and C-Cl bond formation. Free energy barriers indicate that iPr, in comparison to the methyl substituent in the RN4 ligand, activates the cleaving of the Pd-Nax bond through electronic and steric interactions. Overall, reductive elimination leading to C-C bond formation is easier than the formation of a C-Cl bond.

6.
J Biol Inorg Chem ; 23(3): 413-423, 2018 05.
Article in English | MEDLINE | ID: mdl-29502216

ABSTRACT

Bent metallocenes (BM) have anti-tumor properties but they face a serious drug efficacy problem due to poor aqueous solubility and rapid hydrolysis under physiological conditions. These two problems can be fixed by encapsulating them in host molecules such as cyclodextrin (CD), cucurbituril (CB) etc. Experimentally, CD-BM, CB-BM host-guest complexes have been investigated to check the efficiency of the drug delivery and efficiency of the encapsulated drug. CB has been reported to be a better host than CD but the reasons for this has not been figured out. This can be done by finding out the mechanism of binding and the nature of the binding forces in both the inclusion complexes. This is exactly done here by performing a DFT study at BP86/TZP level on CB-BM host-guest systems. For comparison CD-BM with ß-cyclodextrin as host have been studied. Four BMs (Cp2MCl2, M=Ti, V, Nb, Mo) and their corresponding cations (Cp2MCl+, Cp2M2+) are chosen as guests and they are encapsulated into cucurbit-[6]-uril (CB[6]) and cucurbit-[7]-uril(CB[7]) host systems. Computations reveal that CB[7] accommodates well the BMs over CB[6] due to their larger cavity size and also CB[7] is found to be a better host than ß-cyclodextrin. BMs enter vertically rather than horizontally into the CB cavity. The reversible binding of BMs within CB[7] is controlled by various non-bonding interactions and mainly by hydrogen bonding between the portal oxygen atoms and Cp protons as revealed by QTAIM analysis. On the other hand, the interaction between the wall nitrogen atoms in CB[7] and chlorine atoms attached to the metal in BM strengthens the M-Cl bonds that prevents rapid hydrolysis of M-Cl and M-Cp bonds saving the drug. Comparatively, BMs experience less electrostatic attraction and more Pauli repulsion within ß-cyclodextrin cavity and this affects the drug binding with CD. This makes ß-cyclodextrin a less suitable drug carrier for BMs than CBs. Among the four BMs, niobocene binds strongly and titanocene binds weakly with CBs. EDA clearly shows that all the interactions between the guest and host are non-covalent in nature and electrostatic interactions outperform high-repulsion resulting in stable complexes. Cations form stronger complexes than neutral BMs. FMO analysis reveals that neutral BMs are less reactive compared to their cations and complexes are more reactive in CB[6] environment due to excess strain. QTAIM analysis helps to bring out the newer insights in these types of host-guest systems.


Subject(s)
Drug Carriers/administration & dosage , Macrocyclic Compounds/administration & dosage , Metallocenes/administration & dosage , Antineoplastic Agents/administration & dosage , Drug Carriers/chemistry , Macrocyclic Compounds/chemistry , Metallocenes/chemistry
7.
Article in English | MEDLINE | ID: mdl-29126006

ABSTRACT

The interaction of Acid Orange 10 (AO10) with bovine serum albumin (BSA) was investigated comparatively with that of human serum albumin (HSA) using multispectroscopic techniques for understanding their toxic mechanism. Further, density functional theory calculations and docking studies have been carried out to gain more insights into the nature of interactions existing between AO10 and serum albumins. The fluorescence results suggest that AO10 quenched the fluorescence of BSA through the combination of static and dynamic quenching mechanism. The same trend was followed in the interaction of AO10 with HSA. In addition to the type of quenching mechanism, the fluorescence spectroscopic results suggest that the binding occurs near the tryptophan moiety of serum albumins and the binding. AO10 has more binding affinity towards BSA than HSA. An AO10-Trp model has been created to explicitly understand the CHπ interactions from Bader's quantum theory of atoms in molecules analysis which confirmed that AO10 bind more strongly with BSA than that of HSA due to the formation of three hydrogen bonds with BSA whereas it forms two hydrogen bonds in the case of HSA. These obtained results provide an in-depth understanding of the interaction of the acid azo dye AO10 with serum albumins. This interaction study provides insights into the underlying reasons for toxicity of AO10 relevant to understand its effect on bovids and humans during the blood transportation process.


Subject(s)
Coloring Agents/metabolism , Molecular Docking Simulation , Serum Albumin, Bovine/metabolism , Serum Albumin, Human/metabolism , Catalytic Domain , Circular Dichroism , Coloring Agents/chemistry , Energy Transfer , Humans , Protein Structure, Secondary , Quantum Theory , Serum Albumin, Bovine/chemistry , Serum Albumin, Human/chemistry , Spectrometry, Fluorescence , Static Electricity
8.
Colloids Surf B Biointerfaces ; 153: 85-94, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28231499

ABSTRACT

To develop surfactant-based metallodrugs, it is very important to know about their hydrophobicity, micelle forming capacity, their interaction with biomacromolecules such as proteins and nucleic acids, and biological activities. Here, diethylenetriamine (dien) and tetradecylamine ligand (TA) based surfactant-cobalt(III) complexes with single chain domain, [Co(dien)(TA)Cl2]ClO4 (1) and double chain domain [Co(dien)(TA)2Cl](ClO4)2 (2) were chosen to study the effect of hydrophobicity on the interaction with human serum albumin and calf thymus DNA. The obtained results showed that (i) single chain surfactant-cobalt(III) complex (1) interact with HSA and DNA via electrostatic interaction and groove binding, respectively; (ii) double chain surfactant-cobalt(III) complex (2) interact with HSA and DNA via hydrophobic interaction and partial intercalation, respectively, due to the play of hydrophobicity by single and double chain domains. Further it is noted that, double chain surfactant-cobalt(III) complex interact strongly with HSA and DNA, compared single chain surfactant-cobalt(III) complex due to their more hydrophobicity nature. DFT and molecular docking studies offer insights into the mechanism and mode of binding towards the molecular target CT-DNA and HSA. Hence, the present findings will create new avenue towards the use of hydrophobic metallodrugs for various therapeutic applications.


Subject(s)
Cobalt/chemistry , DNA/chemistry , Hydrophobic and Hydrophilic Interactions , Organometallic Compounds/chemistry , Serum Albumin/chemistry , Surface-Active Agents/chemistry , Animals , Cattle , Humans , Molecular Docking Simulation , Quantum Theory
9.
Sci Rep ; 6: 32898, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27595801

ABSTRACT

Two derivatives of organouranyl mononuclear complexes [UO2(L)THF] (1) and [UO2(L)Alc] (2), where L = (2,2'-(1E,1'E)-(2,2-dimethylpropane-1,3-dyl)bis(azanylylidene, THF = Tetrahydrofuran, Alc = Alcohol), have been prepared. These complexes have been determined by elemental analyses, single crystal X-ray crystallography and various spectroscopic studies. Moreover, the structure of these complexes have also been studied by DFT and time dependent DFT measurements showing that both the complexes have distorted pentagonal bipyramidal environment around uranyl ion. TD-DFT results indicate that the complex 1 displays an intense band at 458.7 nm which is mainly associated to the uranyl centered LMCT, where complex 2 shows a band at 461.8 nm that have significant LMCT character. The bonding has been further analyzed by EDA and NBO. The photocatalytic activity of complexes 1 and 2 for the degradation of rhodamine-B (RhB) and methylene blue (MB) under the irradiation of 500W Xe lamp has been explored, and found more efficient in presence of complex 1 than complex 2 for both dyes. In addition, dye adsorption and photoluminescence properties have also been discussed for both complexes.

10.
Dalton Trans ; 44(35): 15450-62, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26227949

ABSTRACT

Designing new and innovative receptors for the selective binding of radionuclides is central to nuclear waste management processes. Recently, a new multi-topic ion-pair receptor was reported which binds a variety of cesium salts. Due to the large size of the receptor, quantum chemical calculations on the full ion-pair receptors are restricted, thus the binding mechanisms are not well understood at the molecular level. We have assessed the binding strengths of various cesium salts to the recently synthesized multi-topic ion-pair receptor molecule using density functional theory based calculations. Our calculations predict that the binding of cesium salts to the receptor predominantly occurs via the cooperative binding mechanism. Cesium and the anion synergistically assist each other to bind favorably inside the receptor. Energy decomposition analysis on the ion-pair complexes shows that the Cs salts are bound to the receptor mainly through electrostatic interactions with small contribution from covalent interactions for large ionic radius anions. Further, QTAIM analysis characterizes the importance of different inter-molecular interactions between the ions and the receptor inside the ion-pair complexes. The role of the crystallographic solvent molecule contributes significantly by ~10 kcal mol(-1) to the overall binding affinities which is quite significant. Further, unlike the recent molecular mechanics (MM) calculations, our calculated binding affinity trends for various Cs ion-pair complexes (CsF, CsCl and CsNO3) are now in excellent agreement with the experimental binding affinity trends.

11.
Phys Chem Chem Phys ; 17(32): 20677-86, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26205195

ABSTRACT

A density functional theory study of the active site structure and features of the oxygen tolerant [NiFeSe] Hase in the oxidized as-isolated state of the enzyme D. vulgaris Hildenborough (DvH) is reported here. The three conformers reported to be present in the X-ray structure (PDB ID: ) have been studied. The novel bidentate interchalcogen ligand (S-Se) in Conf-I of the [NiFeSe] Hase reported for the first time in hydrogenases (Hase) is found to be of donor-acceptor type with an uneven η(2) L → M σ-bond. The symmetry mismatch at the sp orbital of Se and at the dz(2) orbital of Ni has been identified to be the reason for the inability of Conf-II to convert to Conf-I. NBO analysis shows that the sulfinate ligand peculiar to the state stabilizes the active site through n →π* interactions. The results reveal that the isolated oxidized state of the [NiFeSe] Hase is significantly different from the well-known [NiFe] Hase.


Subject(s)
Desulfovibrio vulgaris/enzymology , Hydrogenase/metabolism , Quantum Theory , Hydrogenase/chemistry , Molecular Conformation , Oxidation-Reduction
12.
Dalton Trans ; 44(2): 568-77, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25380389

ABSTRACT

The synthesis of the tetradentate dianionic ligand, H2L (2,2'-(1E,1'E)-(2,2-dimethylpropane-1,3-dyl)bis(azanylylidene)bis(methanylylidene)diphenol), from 2,2-dimethyl-1,3-diaminopropane and its reaction with UO2(CH3COO)2·2H2O in a 1:1 molar ratio in methanol to produce the complex [UO2(L)(CH3OH)] are reported. The isolated compounds have been characterized by elemental analysis, ionization mass spectrometry (ESI-MS), UV/Vis, FT-IR, (1)H- and (13)C-NMR, DEPT-135 spectroscopy, TGA and single-crystal X-ray diffraction. As shown by X-ray crystallography, the coordination geometry around the uranium centre is distorted pentagonal bipyramidal with two imine nitrogen atoms, two phenolic oxygen atoms and one methanol O atom occupying equatorial sites, together with two axial oxo groups. To obtain insights into the structure and spectral properties of the studied complex, density functional theory (DFT) and time dependent density functional theory (TD-DFT) calculations have been carried out. The computed results show that LUMO of the complex is featured with uranium f orbital character. TD-DFT results indicate that the complex displays two intense bands and one weak charge transfer band. The charge transfer band is primarily due to HOMO → LUMO (53%). Two intense bands have main contributions from HOMO-2 → LUMO (81%) and HOMO-3 → LUMO (77%) transitions, respectively. TD-DFT results indicate that the complex displays the charge transfer band primarily due to HOMO → LUMO (53%) and other two charge transfer bands have main contributions from HOMO-2 → LUMO (81%), HOMO-3 → LUMO (77%) transitions, respectively. NBO analysis reveals that the ground state of the complex is mainly stabilized by n→n* interaction. EDA analysis reveals that the interaction existing between the ligand and other parts of the complex is mainly electrostatic in nature.

13.
Dalton Trans ; 44(18): 8529-42, 2015 May 14.
Article in English | MEDLINE | ID: mdl-25486539

ABSTRACT

The electronic structure and spectroscopic properties of a series of rhenium(I) terpyridine complexes were investigated using density functional theory (DFT) and time dependent density functional theory (TD-DFT) methods. The influence of different substituent groups on the optical and electronic properties of Re(I) terpyridine complexes has also been explored. The reorganization energy calculations show that the substituted Re(I) terpyridine complexes are better electron transport materials with high quantum efficiency in OLED devices due to their high electron transport mobility and low λ(electron) values, whereas the unsubstituted complex shows relatively balanceable charge transfer abilities with the higher efficiency in organic light emitting devices (OLEDs). An NBO analysis reveals that n→σ* interactions are mainly responsible for the ground state stabilization of all the complexes. QTAIM results show that in all cases, Re-CO bonds are shared type transient interactions as reported in the other metal ligand complexes. The absorption is associated with (1)MLCT/(1)LLCT/(1)ILCT character while the emission transition has (3)MLCT/(3)LLCT/(3)ILCT character as revealed by a natural transition orbital (NTO) analysis. The higher quantum yields reported for the complexes 4-6 are found to be closely related to both its smaller ΔE(S1-T1), higher µ(S1), E(T1) and moderate (3)MLCT character. The calculated results show that Re(I) terpyridine complexes, particularly complexes 4-6, are suitable candidates for OLED materials.

14.
J Biomol Struct Dyn ; 33(4): 877-91, 2015.
Article in English | MEDLINE | ID: mdl-24854148

ABSTRACT

A series of surfactant-copper(II) Schiff base complexes (1-6) of the general formula, [Cu(sal-R2)2] and [Cu(5-OMe-sal-R2)2], {where, sal=salicylaldehyde, 5-OMe-sal=5-methoxy- salicylaldehyde, and R2=dodecylamine (DA), tetradecylamine (TA), or cetylamine (CA)} have been synthesized and characterized by spectroscopic, ESI-MS, and elemental analysis methods. For a special reason, the structure of one of the complexes (2) was resolved by single crystal X-ray diffraction analysis and it indicates the presence of a distorted square-planar geometry in the complex. Analysis of the binding of these complexes with DNA has been carried out adapting UV-visible-, fluorescence-, as well as circular dichroism spectroscopic methods and viscosity experiments. The results indicate that the complexes bind via minor groove mode involving the hydrophobic surfactant chain. Increase in the length of the aliphatic chain of the ligands facilitates the binding. Further, molecular docking calculations have been performed to understand the nature as well as order of binding of these complexes with DNA. This docking analysis also suggested that the complexes interact with DNA through the alkyl chain present in the Schiff base ligands via the minor groove. In addition, the cytotoxic property of the surfactant-copper(II) Schiff base complexes have been studied against a breast cancer cell line. All six complexes reduced the visibility of the cells but complexes 2, 3, 5, and 6 brought about this effect at fairly low concentrations. Analyzed further, but a small percentage of cells succumbed to necrosis. Of these complexes (6) proved to be the most efficient aptotoxic agent.


Subject(s)
Antineoplastic Agents/chemical synthesis , Coordination Complexes/chemical synthesis , Surface-Active Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Binding, Competitive , Coordination Complexes/pharmacology , Copper/chemistry , Crystallography, X-Ray , DNA Fragmentation , Drug Screening Assays, Antitumor , Ethidium/chemistry , Humans , Inhibitory Concentration 50 , Intercalating Agents/chemistry , MCF-7 Cells , Micelles , Molecular Docking Simulation , Schiff Bases/chemical synthesis , Schiff Bases/pharmacology , Surface-Active Agents/pharmacology , Viscosity
15.
Dalton Trans ; 43(48): 18074-86, 2014 Dec 28.
Article in English | MEDLINE | ID: mdl-25354359

ABSTRACT

A new class of surfactant Co(III) complexes, cis-[Co(ip)2(C12H25NH2)2](ClO4)3 (1) and cis-[Co(dpq)2(C12H25NH2)2](ClO4)3 (2) (ip = imidazo[4,5-f][1,10]phenanthroline, dpq = dipyrido[3,2-d:2'-3'-f]quinoxaline), have been synthesized and characterized by various spectroscopic and physico-chemical techniques. The critical micelle concentration (CMC) values of these complexes in aqueous solution were obtained from conductance measurements. The specific conductivity data (at 303, 308, 313, 318 and 323 K) served for the evaluation of the temperature-dependent CMC and the thermodynamics of micellization (ΔG(0)(m), ΔH(0)(m) and ΔS(0)(m)). The trend in DNA-binding affinities and the spectral properties of a series of complexes, cis-[Co(ip)2(C12H25NH2)2](ClO4)3 (1) and cis-[Co(dpq)2(C12H25NH2)2](ClO4)3 (2), have been experimentally and theoretically investigated. The experimental results indicate that the size and shape of the intercalated ligand and hydrophobicity of the complexes have a marked effect on the binding affinity of the complexes to CT DNA in intercalation mode, and the order of their intrinsic DNA-binding constants Kb is Kb(1) < Kb(2). In addition, the influence of the extended aromatic ring and optical properties of the complexes can be reasonably explained by applying the DFT calculations. The energy gap between HOMO and LUMO indicates that these complexes are prone to interact with CT DNA. Further, molecular docking calculations have also been performed to understand the nature of binding of the complexes and the result confirms that the complexes interact with CT DNA through the alkyl chain. The cytotoxic activity of these complexes on human liver carcinoma cancer cells were determined adopting MTT assay and specific staining techniques, which revealed that the viability of the cells thus treated was significantly decreased and the cells succumbed to apoptosis as seen in the changes in the nuclear morphology and cytoplasmic features.


Subject(s)
Coordination Complexes/chemistry , Copper/chemistry , DNA/chemistry , Intercalating Agents/chemistry , Surface-Active Agents/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/toxicity , DNA/metabolism , Electrochemical Techniques , Humans , Kinetics , Ligands , Micelles , Phenanthrolines/chemistry , Quantum Theory , Quinoxalines/chemistry , Thermodynamics
16.
Phys Chem Chem Phys ; 16(39): 21157-71, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25229400

ABSTRACT

The electronic structure and spectroscopic properties of seven recently reported rhenium(i) phenanthroline complexes were investigated theoretically by density functional theory (DFT) and time dependent density functional theory (TD-DFT) methods. All the seven complexes are shown here to be better electron transport materials with high quantum efficiency in OLED devices due to their high electron transport mobility and low λ(electron) values. Particularly, among these seven chosen complexes the difference between λhole and λ(electron) for tricarbonyl Re(i) complexes is smaller, suggesting that these complexes have a better hole- and electron-transport balance in OLED devices. The absorption is associated with (1)MLCT/(1)LLCT transitions while the emission transition has (3)MLCT/(3)LLCT/(3)ILCT character as revealed by natural transition orbital (NTO) analysis. The calculated results show that the absorption and emission transitions and device efficiency can be changed by varying the nature and position of the axial ligands as revealed by the structural and bonding features of the complexes through natural bond orbital (NBO) and quantum theory of atoms in molecule (QTAIM) analysis.

17.
Phys Chem Chem Phys ; 16(22): 10698-707, 2014 Jun 14.
Article in English | MEDLINE | ID: mdl-24756140

ABSTRACT

The possibility of simultaneous addition of η(2)-H2 to both the metals (Ni and Fe) in the active site of the as isolated state of the enzyme (Ni-SI) is examined here by an atom-by-atom electronic energy partitioning based on the QTAIM method. Results show that the 4LS state prefers H2 removal than addition. Destabilization of the atomic basins of the thiolate bridges and decrease of the electrophilicity of the Fe and Ni, resulting in poor back donation to the CO ligand, are the bottlenecks that hamper dihydrogen activation simultaneously. The study helps to understand why such states are seldom accessed in the activation of dihydrogen. Moreover, Ni has been found to be the natural choice for the dihydrogen binding.


Subject(s)
Hydrogen/chemistry , Hydrogenase/chemistry , Iron/chemistry , Nickel/chemistry , Binding Sites , Carbon Monoxide/chemistry , Hydrogen/metabolism , Hydrogenase/metabolism , Iron/metabolism , Nickel/metabolism , Quantum Theory
18.
Phys Chem Chem Phys ; 16(16): 7430-40, 2014 Apr 28.
Article in English | MEDLINE | ID: mdl-24626682

ABSTRACT

The halogen bond is relatively a less characterized intermolecular interaction compared to the hydrogen bond and the structure, stability and electronic structures of halogenated base pairs, particularly at the wobble junction have been investigated using DFT. Three halogens, namely Cl, Br and I, have been tested for their role in such situations with uracil as the anticodon base. Computed results reveal that when halogen atoms replace protons in the hydrogen bonding positions they induce lot of geometric changes that flip some of the observed base pairs into unobserved base pairs and vice versa. NCI, NBO and AIM analyses explain these changes at the electronic level. The new codons will have lot of impact in future applications, particularly in self assembly of biomaterials and t-RNA synthetic strategies.


Subject(s)
Halogens/chemistry , Adenosine/chemistry , Anticodon , Base Pairing , Codon , Cytosine/chemistry , Guanosine/chemistry , Hydrogen Bonding , Uracil/chemistry
19.
Chem Asian J ; 9(1): 294-304, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24151047

ABSTRACT

A search for novel organic luminogens led us to design and synthesize some N-fused imidazole derivatives based on imidazo[1,2-a]pyridine as the core and arylamine and imidazole as the peripheral groups. The fluorophores were synthesized through a multicomponent cascade reaction (A(3) coupling) of a heterocyclic azine with an aldehyde and alkyne, followed by Suzuki coupling and a multicomponent cyclization reaction. All of the compounds exhibited interesting photophysical responses, especially arylamine-containing derivatives, which displayed strong positive solvatochromism in the emission spectra that indicated a more polar excited state owing to an efficient charge migration from the donor arylamine to the imidazo[1,2-a]pyridine acceptor. The quantum yields ranged from 0.2 to 0.7 and depended on the substitution pattern, most notably that based on the donor group at the C2 position. Moreover, the influence of general and specific solvent effects on the photophysical properties of the fluorophores was discussed with four-parameter Catalán and Kamlet-Taft solvent scales. The excellent thermal, electrochemical, and morphological stability of the compounds was explored by cyclic voltammetry, thermogravimetric analysis, and AFM methods. Furthermore, to understand the structure, bonding, and band gap of the molecules, DFT calculations were performed. The performance of the electroluminescence behavior of the imidazo[1,2-a]pyridine derivative was investigated by fabricating a multilayer organic light-emitting diode with a configuration of ITO/NPB (60 nm)/EML (40 nm)/BCP (15 nm)/Alq3 (20 nm)/LiF (0.5 nm)/Al(100 nm) (ITO=indium tin oxide, EML=emissive layer, BCP=2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, Alq3 =tris(8-hydroxyquinolinato)aluminum), which exhibited white emission with a turn-on voltage of 8 V and a brightness of 22 cd m(-2).


Subject(s)
Electrochemical Techniques , Fluorescent Dyes/chemistry , Luminescent Measurements , Pyridines/chemistry , Fluorescent Dyes/chemical synthesis , Molecular Structure , Pyridines/chemical synthesis
20.
J Phys Chem A ; 117(16): 3529-38, 2013 Apr 25.
Article in English | MEDLINE | ID: mdl-23530734

ABSTRACT

Hypercoordination in silicon has long been reviewed. Dihalogenated perhalocyclohexasilane inverse sandwich complexes (ISCs) are the only group of hypercoordinate Si complexes with anion donors that contact six neutral silicon atoms; opening prospective applications in Si self-assembled nanostructures. Hypercoordinate bonds in 16 such ISCs were studied and their anion ring interactions have been understood with respect to halides. µ(6) mode of coordination was confirmed by the presence of 6 equivalent (3,-1) bond critical points through Bader's QTAIM perspective. The presence of Lewis acid sites above and below the flat Si rings were examined through a reduced density gradient (RDG) analysis, and the ability of halide anions (X' = F, Cl, Br, I) to hypercoordinate has been understood. Role of the ring halides (X) in tuning size and acidity of Lewis sites has been addressed. While the total interaction between the two anions and the ring is quantified through EDA, each SiX' hypercoordinate bond was identified as either purely ionic or transient through QTAIM computations. CDA shows that these complexes are of donor-acceptor type with significant back-donation. The analysis shows that BrF' and IF' were found to reach maximum covalency within the group. Hence in future, tuning these ISCs for construction of nanocrystalline Si structures for optoelectronic properties can essentially utilize the collective, weak yet hypercoordinate Si in these complexes.


Subject(s)
Coordination Complexes/chemistry , Halogens/chemistry , Lewis Acids/chemistry , Silanes/chemistry , Silicon/chemistry , Cyclization , Kinetics , Molecular Structure , Quantum Theory , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...