Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Tech ; 36(3): 879-887, 2017 Dec.
Article in English | MEDLINE | ID: mdl-30160694

ABSTRACT

Since its introduction to the Republic of Georgia in 2007, African swine fever virus (ASFV) has spread across the Caucasus region, the Russian Federation, and some Eastern European countries. It is assumed that large populations of naïve, domestic, free-ranging and wild pigs are vital to the transmission of the disease. Since its epidemic emergence in the region in 2007, ASFV has continued to circulate, which suggests that an endemic cycle has been established and is maintained by contact between free-ranging domestic pigs, wild pigs, and possibly native Ornithodoros ticks, the most likely reservoirs for the virus. In 2014, a survey was conducted across the Republic of Georgia to determine ASFV prevalence among domestic swine herds. All 1,231 samples collected for this survey tested negative for ASF. The probability of observing no reactors in a sample of this size (n = 1,231) from a population with an estimated disease prevalence of 1% is very low (<0.0001). Therefore, it is possible but very unlikely that ASFV was present among domestic swine during the span of this survey. These data suggest that, in 2014, domestic pig herds were not the source of the virus, and that the ASF endemic cycle may be supported by the circulation of ASFV among feral pigs, wild pigs, and possibly native Ornithodoros ticks.


Depuis son introduction en république de Géorgie en 2007, le virus de la peste porcine africaine s'est propagé dans toute la région du Caucase, dans la fédération de Russie et dans certains pays d'Europe orientale. On estime que la transmission de la maladie nécessite des populations naïves et nombreuses de porcs domestiques, élevés en liberté et sauvages. Depuis son émergence épizootique dans la région en 2007, le virus de la peste porcine africaine a continué de se propager, ce qui semble indiquer qu'un cycle d'endémicité s'est établi et se maintient par contact entre les porcs domestiques en liberté, les porcs sauvages, et vraisemblablement les tiques autochtone du genre Ornithodoros, le réservoir le plus probable du virus. Une enquête a été effectuée en 2014 sur tout le territoire de la république de Géorgie afin de déterminer la prévalence du virus de la peste porcine africaine au sein des troupeaux de porcs domestiques. La totalité des 1 231 échantillons prélevés à cette fin ont donné des résultats négatifs au test de détection de la peste porcine africaine. La probabilité qu'un échantillon de cette taille (n = 1 231) ne donne aucune réaction positive dans une population pour laquelle la prévalence de la maladie est estimée à 1 % est extrêmement faible (< 0,0001). Par conséquent, la présence du virus de la peste porcine africaine chez les porcs domestiques au cours de la période de l'étude est possible, mais très peu probable. Ces résultats suggèrent que le cheptel de porcs domestiques n'a pas été à l'origine du virus en 2014 et que le cycle d'endémicité de la maladie est davantage soutenu par la présence du virus chez les porcs féraux et sauvages ainsi que probablement chez les tiques autochtones du genre Ornithodoros.


Desde que en 2007 penetró en la República de Georgia, el virus de la peste porcina africana se ha extendido por toda la región del Cáucaso, la Federación de Rusia y algunos países de Europa Oriental. Se presupone que, para que haya transmisión de la enfermedad, se requieren grandes poblaciones de cerdos sin exposición previa, domésticos, criados en libertad y salvajes. Desde su aparición epidémica en la región, en 2007, el virus de la peste porcina africana ha seguido circulando, lo que lleva a pensar que se ha arraigado un ciclo endémico, mantenido por el contacto entre cerdos domésticos criados en libertad, cerdos salvajes y posiblemente garrapatas autóctonas del género Ornithodoros, que son los más probables reservorios del virus. En 2014 se llevó a cabo un estudio en toda la República de Georgia para determinar la prevalencia del virus en las piaras de cerdos domésticos. De las 1.231 muestras obtenidas al efecto, todas resultaron negativas para el virus de la peste porcina africana. La probabilidad de no encontrar ningún animal positivo en una muestra de ese tamaño (n = 1.231) de una población con una prevalencia de la enfermedad estimada en un 1% resulta extremadamente baja (<0,0001). Por lo tanto es posible, pero muy poco probable, que el virus de la peste porcina africana estuviera presente en cerdos domésticos durante el periodo cubierto por el estudio. Estos datos parecen indicar que, en 2014, las piaras de cerdos domésticos no eran la fuente del virus, y que tal vez el ciclo endémico de la peste porcina africana repose en la circulación del virus en cerdos asilvestrados y salvajes y, posiblemente, en garrapatas autóctonas del género Ornithodoros.


Subject(s)
African Swine Fever/epidemiology , Animals , Georgia (Republic)/epidemiology , Population Surveillance , Swine
2.
Virology ; 412(1): 68-74, 2011 Mar 30.
Article in English | MEDLINE | ID: mdl-21262517

ABSTRACT

Here we show that IQGAP1, a cellular protein that plays a pivotal role as a regulator of the cytoskeleton interacts with Classical Swine Fever Virus (CSFV) Core protein. Sequence analyses identified residues within CSFV Core protein (designated as areas I, II, III and IV) that maintain homology to regions within the matrix protein of Moloney Murine Leukemia Virus (MMLV) that mediate binding to IQGAP1 [EMBO J, 2006 25:2155]. Alanine-substitution within Core regions I, II, III and IV identified residues that specifically mediate the Core-IQGAP1 interaction. Recombinant CSFV viruses harboring alanine substitutions at residues (207)ATI(209) (I), (210)VVE(212) (II), (213)GVK(215) (III), or (232)GLYHN(236) (IV) have defective growth in primary swine macrophage cultures. In vivo, substitutions of residues in areas I and III yielded viruses that were completely attenuated in swine. These data shows that the interaction of Core with an integral component of cytoskeletal regulation plays a role in the CSFV cycle.


Subject(s)
Classical Swine Fever Virus/pathogenicity , Host-Pathogen Interactions , Protein Interaction Mapping , Viral Core Proteins/metabolism , ras GTPase-Activating Proteins/metabolism , Amino Acid Sequence , Amino Acid Substitution/genetics , Animals , Cells, Cultured , Classical Swine Fever/pathology , Classical Swine Fever/virology , Classical Swine Fever Virus/genetics , Macrophages/virology , Molecular Sequence Data , Moloney murine leukemia virus/genetics , Mutagenesis, Site-Directed , Protein Binding , Sequence Homology, Amino Acid , Swine , Viral Core Proteins/genetics , Virulence
3.
Virology ; 411(1): 41-9, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21236462

ABSTRACT

Classical swine fever (CSF) is a highly contagious and often fatal disease of swine caused by CSF virus (CSFV), a positive-sense single-stranded RNA virus within the Pestivirus genus of the Flaviviridae family. Here, we have identified conserved sequence elements observed in nucleotide-binding motifs (NBM) that hydrolyze NTPs within the CSFV non-structural (NS) protein NS4B. Expressed NS4B protein hydrolyzes both ATP and GTP. Substitutions of critical residues within the identified NS4B NBM Walker A and B motifs significantly impair the ATPase and GTPase activities of expressed proteins. Similar mutations introduced into the genetic backbone of a full-length cDNA copy of CSFV strain Brescia rendered no infectious viruses or viruses with impaired replication capabilities, suggesting that this NTPase activity is critical for the CSFV cycle. Recovered mutant viruses retained a virulent phenotype, as parental strain Brescia, in infected swine. These results have important implications for developing novel antiviral strategies against CSFV infection.


Subject(s)
Classical Swine Fever Virus/enzymology , Nucleoside-Triphosphatase/metabolism , Viral Nonstructural Proteins/metabolism , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Amino Acid Substitution/genetics , Animals , Binding Sites , Catalytic Domain , Classical Swine Fever/pathology , Classical Swine Fever/virology , Classical Swine Fever Virus/genetics , Classical Swine Fever Virus/pathogenicity , Conserved Sequence , Guanosine Triphosphate/metabolism , Hydrolysis , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutant Proteins/genetics , Mutant Proteins/metabolism , Nucleoside-Triphosphatase/genetics , Sequence Alignment , Swine , Viral Load , Viral Nonstructural Proteins/genetics , Viremia , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...