Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 193(12): 851, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34845533

ABSTRACT

Wetlands are often located in landscape positions where they receive runoff or floodwaters, which may contain toxic trace metals and other pollutants from anthropogenic sources. Over time, this can lead to the accumulation of potentially harmful levels of metals in wetlands soils. To assess the potential risk of Cu and Zn buildup in wetland soils in North Carolina, soil data from 88 wetlands were analyzed. In a subset of 16 wetlands, more intensive sampling was conducted. Samples were analyzed for Mehlich 3 Cu and Zn, and a subset of the samples was analyzed for total Cu and Zn. Overall, Mehlich 3 Cu and Zn were low, with mean values of 0.9 mg/kg for Cu and 3.2 mg/kg for Zn. Warning levels for Mehlich 3 Zn were only exceeded in three of the 88 sites; elevated Mehlich Cu was not observed. Total Cu and Zn were also low, with only a few sites having elevated levels; however, there was not a strong linear relationship between Mehlich 3 and total metals. Mean levels of Mehlich 3 Cu and Zn in wetlands were much lower than for human-impacted upland soils and background threshold concentrations that might be indicative of disturbance were much lower than warning levels for agricultural soils. The very low mobile Zn and Cu in most of these wetlands indicated that these metals do not pose a risk to the biota in most North Carolina wetlands, but wetlands with a direct and significant anthropogenic source of metal contamination could be exceptions.


Subject(s)
Metals, Heavy , Soil Pollutants , Copper/analysis , Environmental Monitoring , Humans , Metals, Heavy/analysis , North Carolina , Soil , Soil Pollutants/analysis , Wetlands , Zinc/analysis
2.
J Environ Qual ; 40(3): 667-78, 2011.
Article in English | MEDLINE | ID: mdl-21546654

ABSTRACT

Soils provide long-term storage of environmental contaminants, which helps to protect water and air quality and diminishes negative impacts of contaminants on human and ecosystem health. Characterizing solid-phase chemical species in highly complex matrices is essential for developing principles that can be broadly applied to the wide range of notoriously heterogeneous soils occurring at the earth's surface. In the context of historical developments in soil analytical techniques, we describe applications of bulk-sample and spatially resolved synchrotron X-ray absorption spectroscopy (XAS) for characterizing chemical species of contaminants in soils, and for determining the uniqueness of trace-element reactivity in different soil microsites. Spatially resolved X-ray techniques provide opportunities for following chemical changes within soil microsites that serve as highly localized chemical micro- (or nano-)reactors of unique composition. An example of this microreactor concept is shown for micro-X-ray absorption near edge structure analysis of metal sulfide oxidation in a contaminated soil. One research challenge is to use information and principles developed from microscale soil chemistry for predicting macroscale and field-scale behavior of soil contaminants.


Subject(s)
Copper/analysis , Soil Pollutants/analysis , Sulfides/analysis , Trace Elements/analysis , Zinc/analysis , Copper/chemistry , North Carolina , Oxidation-Reduction , Sulfides/chemistry , Synchrotrons/instrumentation , Trace Elements/chemistry , X-Ray Absorption Spectroscopy/instrumentation , X-Ray Absorption Spectroscopy/methods , Zinc/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...