Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
J Integr Neurosci ; 22(3): 69, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37258451

ABSTRACT

Potassium (K+) channels establish and maintain the resting potential of most living cells. Their activity is predominantly regulated by the membrane voltage or the K+ gradient across the cell membrane. However, many cells also express small-conductance calcium-activated potassium (SK) channels, which have the unique ability to translate changes in the level of the intracellular second messenger, Ca2+ to changes in the membrane K+ conductance and, therefore, the resting membrane potential. This article reviews the structure, presence, distribution, and function of SK channels, their pharmacological modulation, and their role in health and disease, emphasizing nociception and pain.


Subject(s)
Calcium , Small-Conductance Calcium-Activated Potassium Channels , Calcium/metabolism , Small-Conductance Calcium-Activated Potassium Channels/metabolism , Potassium/metabolism , Membrane Potentials/physiology , Peripheral Nervous System/metabolism
2.
Curr Issues Mol Biol ; 44(3): 1257-1272, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35723307

ABSTRACT

Several studies have proved that glial cells, as well as neurons, play a role in pain pathophysiology. Most of these studies have focused on the contribution of central glial cells (e.g., microglia and astrocytes) to neuropathic pain. Likewise, some works have suggested that peripheral glial cells, particularly satellite glial cells (SGCs), and the crosstalk between these cells and the sensory neurons located in the peripheral ganglia, play a role in the phenomenon that leads to pain. Nonetheless, the study of SGCs may be challenging, as the validity of studying those cells in vitro is still controversial. In this study, a research protocol was developed to examine the potential use of primary mixed neuronal-glia cell cultures obtained from the trigeminal ganglion cells (TGCs) of neonate mice (P10-P12). Primary cultures were established and analyzed at 4 h, 24 h, and 48 h. To this purpose, phase contrast microscopy, immunocytochemistry with antibodies against anti-ßIII-tubulin and Sk3, scanning electron microscopy, and time-lapse photography were used. The results indicated the presence of morphological changes in the cultured SGCs obtained from the TGCs. The SGCs exhibited a close relationship with neurons. They presented a round shape in the first 4 h, and a more fusiform shape at 24 h and 48 h of culture. On the other hand, neurons changed from a round shape to a more ramified shape from 4 h to 48 h. Intriguingly, the expression of SK3, a marker of the SGCs, was high in all samples at 4 h, with some cells double-staining for SK3 and ßIII-tubulin. The expression of SK3 decreased at 24 h and increased again at 48 h in vitro. These results confirm the high plasticity that the SGCs may acquire in vitro. In this scenario, the authors hypothesize that, at 4 h, a group of the analyzed cells remained undifferentiated and, therefore, were double-stained for SK3 and ßIII-tubulin. After 24 h, these cells started to differentiate into SCGs, which was clearer at 48 h in the culture. Mixed neuronal-glial TGC cultures might be implemented as a platform to study the plasticity and crosstalk between primary sensory neurons and SGCs, as well as its implications in the development of chronic orofacial pain.

3.
Membranes (Basel) ; 12(2)2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35207121

ABSTRACT

Chemoresistance persists as a significant, unresolved clinical challenge in many cancer types. The tumor microenvironment, in which cancer cells reside and interact with non-cancer cells and tissue structures, has a known role in promoting every aspect of tumor progression, including chemoresistance. However, the molecular determinants of microenvironment-driven chemoresistance are mainly unknown. In this review, we propose that the TP53 tumor suppressor, found mutant in over half of human cancers, is a crucial regulator of cancer cell-microenvironment crosstalk and a prime candidate for the investigation of microenvironment-specific modulators of chemoresistance. Wild-type p53 controls the secretion of factors that inhibit the tumor microenvironment, whereas altered secretion or mutant p53 interfere with p53 function to promote chemoresistance. We highlight resistance mechanisms promoted by mutant p53 and enforced by the microenvironment, such as extracellular matrix remodeling and adaptation to hypoxia. Alterations of wild-type p53 extracellular function may create a cascade of spatial amplification loops in the tumor tissue that can influence cellular behavior far from the initial oncogenic mutation. We discuss the concept of chemoresistance as a multicellular/tissue-level process rather than intrinsically cellular. Targeting p53-dependent crosstalk mechanisms between cancer cells and components of the tumor environment might disrupt the waves of chemoresistance that spread across the tumor tissue, increasing the efficacy of chemotherapeutic agents.

5.
Front Neurosci ; 13: 914, 2019.
Article in English | MEDLINE | ID: mdl-31551680

ABSTRACT

The enteric glia, a neural crest-derived cell type that composes the Enteric Nervous System, is involved in controlling gut functions, including motility, gut permeability, and neuronal communication. Moreover this glial cell could to give rise to new neurons. It is believed that enteric neurons are generated up to 21 days postnatally; however, adult gut cells with glial characteristics can give rise to new enteric neurons under certain conditions. The factors that activate this capability of enteric glia to differentiate into neurons remain unknown. Here, we followed the progress of this neuronal differentiation and investigated this ability by challenging enteric glial cells with different culture conditions. We found that, in vitro, enteric glial cells from the gut of adult and neonate mice have a high capability to acquire neuronal markers and undergoing morphological changes. In a co-culture system with 3T3 fibroblasts, the number of glial cells expressing ßIIItubulin decreased after 7 days. The effect of 3T3-conditioned medium on adult cells was not significant, and fewer enteric glial cells from neonate mice began the neurogenic process in this medium. Laminin, an extracellular matrix protein that is highly expressed by the niche of the enteric ganglia, seemed to have a large role in inhibiting the differentiation of enteric glia, at least in cells from the adult gut. Our results suggest that, in an in vitro approach that provides conditions more similar to those of enteric glial cells in vivo, these cells could, to some extent, retain their morphology and marker expression, with their neurogenic potential inhibited. Importantly, laminin seemed to inhibit differentiation of adult enteric glial cells. It is possible that the differentiation of enteric glia into neurons is related to severe changes in the microenvironment, leading to disruption of the basement membrane. In summary, our data indicated that the interaction between the enteric glial cells and their microenvironment molecules significantly affects the control of their behavior and functions.

6.
Glia ; 63(6): 921-35, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25703790

ABSTRACT

Enteric glial cells were first described at the end of the 19th century, but they attracted more interest from researchers only in the last decades of the 20th. Although, they have a different embryological origin, the enteric GLIA share many characteristics with astrocytes, the main glial cell type of the central nervous system (CNS), such as in their expression of the same markers and in their functions. Here we review the construction of the enteric nervous system (ENS), with a focus on enteric glia, and also the main studies that have revealed the action of enteric glia in different aspects of gastrointestinal tract homeostasis, such as in the intestinal barrier, in communications with neurons, and in their action as progenitor cells. We also discuss recent discoveries about the roles of enteric glia in different disorders that affect the ENS, such as degenerative pathologies including Parkinson's and prion diseases, and in cases of intestinal diseases and injury.


Subject(s)
Enteric Nervous System/physiology , Neuroglia/physiology , Animals , Cell Communication/physiology , Enteric Nervous System/physiopathology , Humans , Neurogenesis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...