Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 351: 119990, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38183952

ABSTRACT

Leachate, an effluent produced during solid waste decomposition, interacts directly with soil, mainly in dumpsite areas. Studies on terrestrial animal exposure to leachate are, however, lacking. Plants are the most frequently studied organisms, while animal studies, especially earthworms, are limited. Nevertheless, ecotoxicological assessments involving earthworms are crucial due to their role in soil health and ecosystem maintenance, which are paramount in understanding potential terrestrial ecosystem leachate effects. In this context, this study aimed to evaluate behavioral effects, sublethal cytotoxicity and antioxidant system alterations in Eisenia andrei earthworms chronically exposed to leachate from a closed dumpsite. Cytotoxicity was determined by coelomocyte density, viability and cell typing, while antioxidant system alterations were assessed through superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), reduced glutathione (GSH) and metallothionein (MT) determinations. Malondialdehyde (MDA) and protein carbonylation (PTC) levels were also determined as oxidative effect markers. Finally, the Biomarker Response Index (BRI) was assessed, aiming to quantitatively integrate the results of the investigated endpoints and establish a biological health state (BHS) for each leachate concentration. Leachate exposure led to leak responses at concentrations of up to 50%, but attraction at higher concentrations. Decreased cell density (28%) was observed after 48 days and reduced viability (50%), after 14 days of leachate exposure. The observed cell typing changes indicate anti-inflammatory immune system effects. Leachate exposure led to several antioxidant system alterations, increasing SOD (2-6 %), CAT (5-35 %) and GST (5-70 %) activities and GSH (7-37%) and MT (3-67%) levels. Earthworm antioxidant defenses were, however, able to prevent lipid peroxidation, which decreased (11-37%) following leachate exposure to concentrations above 12.5%, and PTC, which increased at 42 days (26%) and reduced at 56 days (12 %). This is the first PTC assessment in leachate-exposed earthworms. The increased carbonylation levels observed after 42 days alongside MDA decreases highlight the need for further research employing oxidative effect biomarkers other than MDA. Finally, an integrated approach employing the BRI was carried out, revealing mild initial changes evolving to moderate to major effects at the highest leachate exposure concentration, with an effect attenuation detected at the end of the experiment. In this sense, this study brings forth a significant novelty, employing a biomarker previously not assessed in earthworms, demonstrating an oxidative effect, alongside the use of the BRI as an integrative tool for the endpoints applied in this assessment.


Subject(s)
Oligochaeta , Soil Pollutants , Animals , Antioxidants/metabolism , Oligochaeta/metabolism , Oxidative Stress , Ecosystem , Soil Pollutants/toxicity , Soil Pollutants/metabolism , Superoxide Dismutase/metabolism , Soil , Biomarkers/metabolism
2.
Ecotoxicol Environ Saf ; 143: 275-282, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28551585

ABSTRACT

The Indigo carmine (IC) dye has been widely used in textile industries, even though it has been considered toxic for rats, pigs and humans. Owing to its toxicity, wastes containing this compound should be treated to minimize or eliminate their toxic effects on the biota. As an alternative to wastewater treatment, advanced oxidative processes (AOPs) have been highlighted due to their high capacity to destruct organic molecules. In this context, this study aimed to evaluate Indigo Carmine toxicity to soil organisms using the earthworm Eisenia andrei as a model-organism and also verify the efficiency of AOP in reducing its toxicity to these organisms. To this end, lethal (mortality) and sub-lethal (loss or gain of biomass, reproduction, behavior, morphological changes and immune system cells) effects caused by this substance and its degradation products in these annelids were evaluated. Morphological changes were observed even in organisms exposed to low concentrations, while mortality was the major effect observed in individuals exposed to high levels of indigo carmine dye. The organisms exposed to the IC during the contact test showed mortality after 72h of exposure (LC50 = 75.79mgcm-2), while those exposed to photoproducts showed mortality after 48h (LC50 = 243min). In the chronic study, the organisms displayed a mortality rate of 14%, while those exposed to the photoproduct reached up to 32.7%. A negative influence of the dye on the reproduction rate was observed, while by-products affected juvenile survival. A loss of viability and alterations in the cellular proportion was verified during the chronic test. However, the compounds did not alter the behavior of the annelids in the leak test (RL ranged from 20% to 30%). Although photocatalysis has been presented as an alternative technology for the treatment of waste containing the indigo carmine dye, this process produced byproducts even more toxic than the original compounds to E. andrei.


Subject(s)
Indigo Carmine/toxicity , Oligochaeta/drug effects , Oligochaeta/immunology , Soil Pollutants/toxicity , Titanium/chemistry , Animals , Avoidance Learning/drug effects , Behavior, Animal/drug effects , Biomass , Catalysis , Indigo Carmine/radiation effects , Lethal Dose 50 , Oxidation-Reduction , Reproduction/drug effects , Soil/chemistry , Soil Pollutants/radiation effects , Time Factors , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...