Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cancer Res Commun ; 4(7): 1677-1689, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38896052

ABSTRACT

Aberrant activation of GLI transcription factors has been implicated in the pathogenesis of different tumor types including pancreatic ductal adenocarcinoma. However, the mechanistic link with established drivers of this disease remains in part elusive. In this study, using a new genetically engineered mouse model overexpressing constitutively active mouse form of GLI2 and a combination of genome-wide assays, we provide evidence of a novel mechanism underlying the interplay between KRAS, a major driver of pancreatic ductal adenocarcinoma development, and GLI2 to control oncogenic gene expression. These mice, also expressing KrasG12D, show significantly reduced median survival rate and accelerated tumorigenesis compared with the KrasG12D only expressing mice. Analysis of the mechanism using RNA sequencing demonstrate higher levels of GLI2 targets, particularly tumor growth-promoting genes, including Ccnd1, N-Myc, and Bcl2, in KrasG12D mutant cells. Furthermore, chromatin immunoprecipitation sequencing studies showed that in these cells KrasG12D increases the levels of trimethylation of lysine 4 of the histone 3 (H3K4me3) at the promoter of GLI2 targets without affecting significantly the levels of other major active chromatin marks. Importantly, Gli2 knockdown reduces H3K4me3 enrichment and gene expression induced by mutant Kras. In summary, we demonstrate that Gli2 plays a significant role in pancreatic carcinogenesis by acting as a downstream effector of KrasG12D to control gene expression.


Subject(s)
Carcinoma, Pancreatic Ductal , Gene Expression Regulation, Neoplastic , Pancreatic Neoplasms , Proto-Oncogene Proteins p21(ras) , Zinc Finger Protein Gli2 , Animals , Zinc Finger Protein Gli2/genetics , Zinc Finger Protein Gli2/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Mice , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Carcinogenesis/genetics , Humans , Histones/metabolism , Histones/genetics , Promoter Regions, Genetic/genetics , Cell Line, Tumor , Mice, Transgenic , Transcription, Genetic
2.
Biochem J ; 480(15): 1199-1216, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37477952

ABSTRACT

Aberrant activation of the Hedgehog (Hh) signaling pathway, through which the GLI family of transcription factors (TF) is stimulated, is commonly observed in cancer cells. One well-established mechanism of this increased activity is through the inactivation of Suppressor of Fused (SUFU), a negative regulator of the Hh pathway. Relief from negative regulation by SUFU facilitates GLI activity and induction of target gene expression. Here, we demonstrate a novel role for SUFU as a promoter of GLI activity in pancreatic ductal adenocarcinoma (PDAC). In non-ciliated PDAC cells unresponsive to Smoothened agonism, SUFU overexpression increases GLI transcriptional activity. Conversely, knockdown (KD) of SUFU reduces the activity of GLI in PDAC cells. Through array PCR analysis of GLI target genes, we identified B-cell lymphoma 2 (BCL2) among the top candidates down-regulated by SUFU KD. We demonstrate that SUFU KD results in reduced PDAC cell viability, and overexpression of BCL2 partially rescues the effect of reduced cell viability by SUFU KD. Further analysis using as a model GLI1, a major TF activator of the GLI family in PDAC cells, shows the interaction of SUFU and GLI1 in the nucleus through previously characterized domains. Chromatin immunoprecipitation (ChIP) assay shows the binding of both SUFU and GLI1 at the promoter of BCL2 in PDAC cells. Finally, we demonstrate that SUFU promotes GLI1 activity without affecting its protein stability. Through our findings, we propose a novel role of SUFU as a positive regulator of GLI1 in PDAC, adding a new mechanism of Hh/GLI signaling pathway regulation in cancer cells.


Subject(s)
Pancreatic Neoplasms , Repressor Proteins , Humans , Repressor Proteins/genetics , Repressor Proteins/metabolism , Zinc Finger Protein GLI1/genetics , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins c-bcl-2 , Pancreatic Neoplasms
3.
Biochem J ; 480(3): 225-241, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36734208

ABSTRACT

Carcinoma-associated fibroblasts (CAFs) play an important role in the progression of multiple malignancies. Secretion of cytokines and growth factors underlies the pro-tumoral effect of CAFs. Although this paracrine function has been extensively documented, the molecular mechanisms controlling the expression of these factors remain elusive. In this study, we provide evidence of a novel CAF transcriptional axis regulating the expression of SDF1, a major driver of cancer cell migration, involving the transcription factor GLI1 and histone acetyltransferase p300. We demonstrate that conditioned media from CAFs overexpressing GLI1 induce the migration of pancreatic cancer cells, and this effect is impaired by an SDF1-neutralizing antibody. Using a combination of co-immunoprecipitation, proximity ligation assay and chromatin immunoprecipitation assay, we further demonstrate that GLI1 and p300 physically interact in CAFs to co-occupy and drive SDF1 promoter activity. Mapping experiments highlight the requirement of GLI1 N-terminal for the interaction with p300. Importantly, knockdowns of both GLI1 and p300 reduce SDF1 expression. Further analysis shows that knockdown of GLI1 decreases SDF1 promoter activity, p300 recruitment, and levels of its associated histone marks (H4ac, H3K27ac, and H3K14ac). Finally, we show that the integrity of two GLI binding sites in the SDF1 promoter is required for p300 recruitment. Our findings define a new role for the p300-GLI1 complex in the regulation of SDF1, providing new mechanistic insight into the molecular events controlling pancreatic cancer cells migration.


Subject(s)
Cancer-Associated Fibroblasts , Pancreatic Neoplasms , Humans , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Cell Line, Tumor , Cell Movement , Chromatin Immunoprecipitation , Pancreatic Neoplasms/pathology , Signal Transduction , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/metabolism , Chemokine CXCL12/metabolism , Pancreatic Neoplasms
4.
Biochim Biophys Acta Gene Regul Mech ; 1866(2): 194924, 2023 06.
Article in English | MEDLINE | ID: mdl-36842643

ABSTRACT

Upon accumulation of improperly folded proteins in the Endoplasmic Reticulum (ER), the Unfolded Protein Response (UPR) is triggered to restore ER homeostasis. The induction of stress genes is a sine qua non condition for effective adaptive UPR. Although this requirement has been extensively described, the mechanisms underlying this process remain in part uncharacterized. Here, we show that p97/VCP, an AAA+ ATPase known to contribute to ER stress-induced gene expression, regulates the transcription factor GLI1, a primary effector of Hedgehog (Hh) signaling. Under basal (non-ER stress) conditions, GLI1 is repressed by a p97/VCP-HDAC1 complex while upon ER stress GLI1 is induced through a mechanism requiring both USF2 binding and increase histone acetylation at its promoter. Interestingly, the induction of GLI1 was independent of ligand-regulated Hh signaling. Further analysis showed that GLI1 cooperates with ATF6f to induce promoter activity and expression of XBP1, a key transcription factor driving UPR. Overall, our work demonstrates a novel role for GLI1 in the regulation of ER stress gene expression and defines the interplay between p97/VCP, HDAC1 and USF2 as essential players in this process.


Subject(s)
Adenosine Triphosphatases , Hedgehog Proteins , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/metabolism , Valosin Containing Protein/genetics , Valosin Containing Protein/metabolism , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Biochem J ; 477(17): 3131-3145, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32766732

ABSTRACT

The Hedgehog-regulated transcription factors GLI1 and GLI2 play overlapping roles in development and disease; however, the mechanisms underlying their interplay remain elusive. We report for the first time that GLI1 and GLI2 physically and functionally interact in cancer cells. GLI1 and GLI2 were shown to co-immunoprecipitate in PANC1 pancreatic cancer cells and RMS13 rhabdomyosarcoma cells. Mapping analysis demonstrated that the zinc finger domains of both proteins are required for their heteromerization. RNAi knockdown of either GLI1 or GLI2 inhibited expression of many well-characterized GLI target genes (BCL2, MYCN, PTCH2, IL7 and CCND1) in PANC1 cells, whereas PTCH1 expression was only inhibited by GLI1 depletion. qPCR screening of a large set of putative canonical and non-canonical Hedgehog/GLI targets identified further genes (e.g. E2F1, BMP1, CDK2) strongly down-regulated by GLI1 and/or GLI2 depletion in PANC1 cells, and demonstrated that ANO1, AQP1 and SOCS1 are up-regulated by knockdown of either GLI1 or GLI2. Chromatin immunoprecipitation showed that GLI1 and GLI2 occupied the same regions at the BCL2, MYCN and CCND1 promoters. Furthermore, depletion of GLI1 inhibited GLI2 occupancy at these promoters, suggesting that GLI1/GLI2 interaction is required for the recruitment of GLI2 to these sites. Together, these findings indicate that GLI1 and GLI2 co-ordinately regulate the transcription of some genes, and provide mechanistic insight into the roles of GLI proteins in carcinogenesis.


Subject(s)
Gene Expression Regulation, Neoplastic , Hedgehog Proteins/metabolism , Nuclear Proteins/metabolism , Pancreatic Neoplasms/metabolism , Rhabdomyosarcoma/metabolism , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein Gli2/metabolism , Cell Line, Tumor , Hedgehog Proteins/genetics , Humans , Nuclear Proteins/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Protein Multimerization , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma/pathology , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein Gli2/genetics
6.
Nucleic Acids Res ; 48(13): 7169-7181, 2020 07 27.
Article in English | MEDLINE | ID: mdl-32544250

ABSTRACT

The modulation of GLI2, an oncogenic transcription factor commonly upregulated in cancer, is in many cases not due to genetic defects, suggesting dysregulation through alternative mechanisms. The identity of these molecular events remains for the most part unknown. Here, we identified TFII-I as a novel repressor of GLI2 expression. Mapping experiments suggest that the INR region of the GLI2 promoter is necessary for GLI2 repression. ChIP studies showed that TFII-I binds to this INR. TFII-I knockdown decreased the binding of NELF-A, a component of the promoter-proximal pausing complex at this site, and enriched phosphorylated RNAPII serine 2 in the GLI2 gene body. Immunoprecipitation studies demonstrate TFII-I interaction with SPT5, another pausing complex component. TFII-I overexpression antagonized GLI2 induction by TGFß, a known activator of GLI2 in cancer cells. TGFß reduced endogenous TFII-I binding to the INR and increased RNAPII SerP2 in the gene body. We demonstrate that this regulatory mechanism is not exclusive of GLI2. TGFß-induced genes CCR7, TGFß1 and EGR3 showed similar decreased TFII-I and NELF-A INR binding and increased RNAPII SerP2 in the gene body post-TGFß treatment. Together these results identify TFII-I as a novel repressor of a subset of TGFß-responsive genes through the regulation of RNAPII pausing.


Subject(s)
Nuclear Proteins/metabolism , RNA Polymerase II/metabolism , Transcription Factors, TFII/physiology , Transforming Growth Factor beta/metabolism , Zinc Finger Protein Gli2/metabolism , Hep G2 Cells , Humans , Promoter Regions, Genetic , Repressor Proteins/physiology , Transcription, Genetic , Transcriptional Activation
7.
EMBO Rep ; 21(5): e50468, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32329185

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with one of the poorest prognosis among all malignancies. The initiation and evolution of this kind of tumor depends on a complex interaction between cancer cells and the tumor microenvironment (TME). In an elegant study, Steins et al [1] used a combination of relevant disease models to show that mesenchymal subtype of PDAC shows a distinct deactivation of stellate cells in a CSF1-dependent fashion. This study shedding light on a new role for the stroma driving an aggressive PDAC subtypes shifts the current paradigm for the requirement of an activated TME to regulate PDAC growth and maintenance.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Carcinoma, Pancreatic Ductal/genetics , Humans , Macrophage Colony-Stimulating Factor , Pancreas , Pancreatic Neoplasms/genetics , Tumor Microenvironment
8.
Cancer Res ; 77(3): 632-645, 2017 02 01.
Article in English | MEDLINE | ID: mdl-27872089

ABSTRACT

Existing antiangiogenic approaches to treat metastatic hepatocellular carcinoma (HCC) are weakly effectual, prompting further study of tumor angiogenesis in this disease setting. Here, we report a novel role for sulfatase 2 (SULF2) in driving HCC angiogenesis. Sulf2-deficient mice (Sulf2 KO) exhibited resistance to diethylnitrosamine-induced HCC and did not develop metastases like wild-type mice (Sulf2 WT). The smaller and less numerous tumors formed in Sulf2 KO mice exhibited a markedly lower microvascular density. In human HCC cells, SULF2 overexpression increased endothelial proliferation, adhesion, chemotaxis, and tube formation in a paracrine fashion. Mechanistic analyses identified the extracellular matrix protein periostin (POSTN), a ligand of αvß3/5 integrins, as an effector protein in SULF2-induced angiogenesis. POSTN silencing in HCC cells attenuated SULF2-induced angiogenesis and tumor growth in vivo The TGFß1/SMAD pathway was identified as a critical signaling axis between SULF2 and upregulation of POSTN transcription. In clinical HCC specimens, elevated levels of SULF2 correlated with increased microvascular density, POSTN levels, and relatively poorer patient survival. Together, our findings define an important axis controlling angiogenesis in HCC and a mechanistic foundation for rational drug development. Cancer Res; 77(3); 632-45. ©2016 AACR.


Subject(s)
Carcinoma, Hepatocellular/pathology , Cell Adhesion Molecules/biosynthesis , Gene Expression Regulation, Neoplastic/physiology , Liver Neoplasms/pathology , Neovascularization, Pathologic/pathology , Animals , Biomarkers, Tumor/analysis , Blotting, Western , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/mortality , Chromatin Immunoprecipitation , Enzyme-Linked Immunosorbent Assay , Gene Knockdown Techniques , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Liver Neoplasms/metabolism , Liver Neoplasms/mortality , Mice , Mice, Knockout , Neovascularization, Pathologic/metabolism , Oligonucleotide Array Sequence Analysis , Real-Time Polymerase Chain Reaction , Signal Transduction/physiology , Smad Proteins/metabolism , Sulfatases , Sulfotransferases/metabolism , Transforming Growth Factor beta1/metabolism
9.
J Biol Chem ; 291(49): 25749-25760, 2016 Dec 02.
Article in English | MEDLINE | ID: mdl-27760825

ABSTRACT

Although the differentiation of oncogenically transformed basal progenitor cells is one of the key steps in prostate tumorigenesis, the mechanisms mediating this cellular process are still largely unknown. Here we demonstrate that an expanded p63+ and CK5+ basal/progenitor cell population, induced by the concomitant activation of oncogenic Kras(G12D) and androgen receptor (AR) signaling, underwent cell differentiation in vivo The differentiation process led to suppression of p63-expressing cells with a decreased number of CK5+ basal cells but an increase of CK8+ luminal tumorigenic cells and revealed a hierarchal lineage pattern consisting of p63+/CK5+ progenitor, CK5+/CK8+ transitional progenitor, and CK8+ differentiated luminal cells. Further analysis of the phenotype showed that Kras-AR axis-induced tumorigenesis was mediated by Gli transcription factors. Combined blocking of the activators of this family of proteins (Gli1 and Gli2) inhibited the proliferation of p63+ and CK5+ basal/progenitor cells and development of tumors. Finally, we identified that Gli1 and Gli2 exhibited different functions in the regulation of p63 expression or proliferation of p63+ cells in Kras-AR driven tumors. Gli2, but not Gli1, transcriptionally regulated the expression levels of p63 and prostate sphere formation. Our study provides evidence of a novel mechanism mediating pathological dysregulation of basal/progenitor cells through the differential activation of the Gli transcription factors. Also, these findings define Gli proteins as new downstream mediators of the Kras-AR axis in prostate carcinogenesis and open a potential therapeutic avenue of targeting prostate cancer progression by inhibiting Gli signaling.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Kruppel-Like Transcription Factors/metabolism , Nuclear Proteins/metabolism , Prostate/metabolism , Prostatic Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Receptors, Androgen/metabolism , Zinc Finger Protein GLI1/metabolism , Animals , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Mice, Transgenic , Phosphoproteins/genetics , Phosphoproteins/metabolism , Prostate/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Receptors, Androgen/genetics , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein Gli2
10.
Biochim Biophys Acta ; 1835(1): 86-99, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23127970

ABSTRACT

As with natural ecosystems, species within the tumor microenvironment are connected by pairwise interactions (e.g. mutualism, predation) leading to a strong interdependence of different populations on each other. In this review we have identified the ecological roles played by each non-neoplastic population (macrophages, endothelial cells, fibroblasts) and other abiotic components (oxygen, extracellular matrix) directly involved with neoplastic development. A way to alter an ecosystem is to affect other species within the environment that are supporting the growth and survival of the species of interest, here the tumor cells; thus, some features of ecological systems could be exploited for cancer therapy. We propose a well-known antitumor therapy called photodynamic therapy (PDT) as a novel modulator of ecological interactions. We refer to this as "ecological photodynamic therapy." The main goal of this new strategy is the improvement of therapeutic efficiency through the disruption of ecological networks with the aim of destroying the tumor ecosystem. It is therefore necessary to identify those interactions from which tumor cells get benefit and those by which it is impaired, and then design multitargeted combined photodynamic regimes in order to orchestrate non-neoplastic populations against their neoplastic counterpart. Thus, conceiving the tumor as an ecological system opens avenues for novel approaches on treatment strategies.


Subject(s)
Neoplasms/drug therapy , Photochemotherapy/methods , Tumor Microenvironment/drug effects , Animals , Humans , Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...