Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 149: 318-26, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24125797

ABSTRACT

The influence of differing operational conditions of two-stage digesters on biokinetic characteristics and communities of methanogenic archaea was evaluated. Operating temperature of each phase influenced the archaeal communities significantly. Also, a strong correlation was observed between community composition and temperature and pH. The maximum specific substrate utilization rates (k max) of acetoclastic methanogens in the mesophilic and thermophilic 1st phases were 11.4 and 22.0 mgCOD mgCOD(-1)d(-1), respectively, whereas significantly lower k max values were estimated for the mesophilic and thermophilic 2nd-phase digesters which were 7.6 and 16.6 mgCOD mgCOD(-1)d(-1), respectively. It appeared that the biokinetic characteristics of the acetoclastic methanogen communities were reliant on digester loading rates. Also, higher temperature dependency coefficients (θ) were observed for the long retention time digesters when compared to the values computed for the 1st-phase digesters. Accordingly, the implementation of two sets of biokinetic parameters for acetoclastic methanogen will improve modeling of phased anaerobic digesters.


Subject(s)
Archaea/genetics , Archaea/metabolism , Methane/metabolism , Refuse Disposal/methods , Acetates/metabolism , Anaerobiosis , Biodegradation, Environmental , Biomass , Bioreactors , Denaturing Gradient Gel Electrophoresis , Kinetics , Molecular Sequence Data , Refuse Disposal/instrumentation , Temperature
2.
Water Res ; 47(4): 1558-69, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23332790

ABSTRACT

Phased anaerobic digestion is a promising technology and may be a potential source of bio-energy production. Anaerobic digesters are widely used for sewage sludge stabilization and thus a better understanding of the microbial process and kinetics may allow increased volatile solids reduction and methane production through robust process operation. In this study, we analyzed the impact of phase separation and operational conditions on the bio-kinetic characteristics and communities of bacteria associated with four phased anaerobic digestion systems. In addition to significant differences between bacterial communities associated with different digester operating temperatures, our results also revealed that bacterial communities in the phased anaerobic digestion systems differed between the 1st and 2nd phase digesters and we identified strong community composition correlations with several measured physicochemical parameters. The maximum specific growth rates of propionate oxidizing bacteria (POB) in the mesophilic and thermophilic 1st phases were 11 and 23.7 mgCOD mgCOD(-1) d(-1), respectively, while those of the mesophilic and thermophilic 2nd-phase digesters were 6.7 and 18.6 mgCOD mgCOD(-1) d(-1), respectively. Hence, the biokinetic characteristics of the POB population were dependent on the digester loading. In addition, we observed that the temperature dependency factor (θ) values were higher for the less heavily loaded digesters as compared to the values obtained for the 1st-phase digesters. Our results suggested the appropriate application of two sets of POB bio-kinetic that reflect the differing growth responses as a function of propionate concentration (and/or organic loading rates). Also, modeling acetogenesis in phased anaerobic sludge digestion systems will be improved considering a population shift in separate phases. On the basis of the bio-kinetic values estimated in various digesters, high levels of propionate in the thermophilic digesters may be best explained by the establishment of POB with low affinities (high K(s)) for propionate. Achieving low levels of propionate with either thermophilic or short HRT digesters is challenging and a relatively long HRT mesophilic digester should be employed for this purpose.


Subject(s)
Bacteria/metabolism , Propionates/metabolism , Sewage/microbiology , Waste Disposal, Fluid/instrumentation , Anaerobiosis , Bacteria/classification , Bacteria/genetics , Biological Oxygen Demand Analysis , Bioreactors/microbiology , Denaturing Gradient Gel Electrophoresis , Kinetics , Temperature , Waste Disposal, Fluid/methods
3.
Appl Environ Microbiol ; 79(2): 424-33, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23104405

ABSTRACT

Methane emissions represent a major environmental concern associated with manure management in the livestock industry. A more thorough understanding of how microbial communities function in manure storage tanks is a prerequisite for mitigating methane emissions. Identifying the microorganisms that are metabolically active is an important first step. Methanogenic archaea are major contributors to methanogenesis in stored swine manure, and we investigated active methanogenic populations by DNA stable isotope probing (DNA-SIP). Following a preincubation of manure samples under anoxic conditions to induce substrate starvation, [U-(13)C]acetate was added as a labeled substrate. Fingerprint analysis of density-fractionated DNA, using length-heterogeneity analysis of PCR-amplified mcrA genes (encoding the alpha subunit of methyl coenzyme M reductase), showed that the incorporation of (13)C into DNA was detectable at in situ acetate concentrations (~7 g/liter). Fingerprints of DNA retrieved from heavy fractions of the (13)C treatment were primarily enriched in a 483-bp amplicon and, to a lesser extent, in a 481-bp amplicon. Analyses based on clone libraries of the mcrA and 16S rRNA genes revealed that both of these heavy DNA amplicons corresponded to Methanoculleus spp. Our results demonstrate that uncultivated methanogenic archaea related to Methanoculleus spp. were major contributors to acetate-C assimilation during the anoxic incubation of swine manure storage tank samples. Carbon assimilation and dissimilation rate estimations suggested that Methanoculleus spp. were also major contributors to methane emissions and that the hydrogenotrophic pathway predominated during methanogenesis.


Subject(s)
Manure/microbiology , Methane/metabolism , Methanomicrobiaceae/isolation & purification , Methanomicrobiaceae/metabolism , Anaerobiosis , Animals , Cluster Analysis , DNA, Archaeal/chemistry , DNA, Archaeal/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Isotope Labeling , Methanomicrobiaceae/classification , Methanomicrobiaceae/genetics , Molecular Sequence Data , Oxidoreductases/genetics , Phylogeny , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...