Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Comput Biol ; 19(11): e1011648, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38019772

ABSTRACT

BACKGROUND: Whole genome sequencing (WGS) holds great potential for the management and control of tuberculosis. Accurate analysis of samples with low mycobacterial burden, which are characterized by low (<20x) coverage and high (>40%) levels of contamination, is challenging. We created the MAGMA (Maximum Accessible Genome for Mtb Analysis) bioinformatics pipeline for analysis of clinical Mtb samples. METHODS AND RESULTS: High accuracy variant calling is achieved by using a long seedlength during read mapping to filter out contaminants, variant quality score recalibration with machine learning to identify genuine genomic variants, and joint variant calling for low Mtb coverage genomes. MAGMA automatically generates a standardized and comprehensive output of drug resistance information and resistance classification based on the WHO catalogue of Mtb mutations. MAGMA automatically generates phylogenetic trees with drug resistance annotations and trees that visualize the presence of clusters. Drug resistance and phylogeny outputs from sequencing data of 79 primary liquid cultures were compared between the MAGMA and MTBseq pipelines. The MTBseq pipeline reported only a proportion of the variants in candidate drug resistance genes that were reported by MAGMA. Notable differences were in structural variants, variants in highly conserved rrs and rrl genes, and variants in candidate resistance genes for bedaquiline, clofazmine, and delamanid. Phylogeny results were similar between pipelines but only MAGMA visualized clusters. CONCLUSION: The MAGMA pipeline could facilitate the integration of WGS into clinical care as it generates clinically relevant data on drug resistance and phylogeny in an automated, standardized, and reproducible manner.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Phylogeny , Genomics , Genome , Tuberculosis/drug therapy , Tuberculosis/genetics
2.
PLoS One ; 18(10): e0293254, 2023.
Article in English | MEDLINE | ID: mdl-37847720

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0279644.].

3.
Res Sq ; 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36824956

ABSTRACT

Background: Rifampicin resistant tuberculosis remains a global health problem with almost half a million new cases annually. In high-income countries patients empirically start a standardized treatment regimen, followed by an individualized regimen guided by drug susceptibility test (DST) results. In most settings, DST information is not available or is limited to isoniazid and fluoroquinolones. Whole genome sequencing could more accurately guide individualized treatment as the full drug resistance profile is obtained with a single test. Whole genome sequencing has not reached its full potential for patient care, in part due to the complexity of translating a resistance profile into the most effective individualized regimen. Methods: We developed a treatment recommender clinical decision support system (CDSS) and an accompanying web application for user-friendly recommendation of the optimal individualized treatment regimen to a clinician. Results: Following expert stakeholder meetings and literature review, nine drug features and 14 treatment regimen features were identified and quantified. Using machine learning, a model was developed to predict the optimal treatment regimen based on a training set of 3895 treatment regimen-expert feedback pairs. The acceptability of the treatment recommender CDSS was assessed as part of a clinical trial and in a routine care setting. Within the clinical trial setting, all patients received the CDSS recommended treatment. In 8 of 20 cases, the initial recommendation was recomputed because of stock out, clinical contra-indication or toxicity. In routine care setting, physicians rejected the treatment recommendation in 7 out of 15 cases because it deviated from the national TB treatment guidelines. A survey indicated that the treatment recommender CDSS is easy to use and useful in clinical practice but requires digital infrastructure support and training. Conclusions: Our findings suggest that global implementation of the novel treatment recommender CDSS holds the potential to improve treatment outcomes of rifampicin resistant tuberculosis.

4.
PLoS One ; 17(12): e0279644, 2022.
Article in English | MEDLINE | ID: mdl-36584023

ABSTRACT

Following a huge global effort, the first World Health Organization (WHO)-endorsed catalogue of 17,356 variants in the Mycobacterium tuberculosis complex along with their classification as associated with resistance (interim), not associated with resistance (interim) or uncertain significance was made public In June 2021. This marks a critical step towards the application of next generation sequencing (NGS) data for clinical care. Unfortunately, the variant format used makes it difficult to look up variants when NGS data is generated by other bioinformatics pipelines. Furthermore, the large number of variants of uncertain significance in the catalogue hamper its useability in clinical practice. We successfully converted 98.3% of variants from the WHO catalogue format to the standardized HGVS format. We also created TBProfiler version 4.4.0 to automate the calling of all variants located in the tier 1 and 2 candidate resistance genes along with their classification when listed in the WHO catalogue. Using a representative sample of 339 clinical isolates from South Africa containing 691 variants in a tier 1 or 2 gene, TBProfiler classified 105 (15%) variants as conferring resistance, 72 (10%) as not conferring resistance and 514 (74%) as unclassified, with an average of 29 unclassified variants per isolate. Using a second cohort of 56 clinical isolates from a TB outbreak in Spain containing 21 variants in the tier 1 and 2 genes, TBProfiler classified 13 (61.9%) as unclassified, 7 (33.3%) as not conferring resistance, and a single variant (4.8%) classified as conferring resistance. Continued global efforts using standardized methods for genotyping, phenotyping and bioinformatic analyses will be essential to ensure that knowledge on genomic variants translates into improved patient care.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Drug Resistance, Multiple, Bacterial/genetics , Computational Biology , South Africa , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/genetics , Tuberculosis, Multidrug-Resistant/microbiology , Microbial Sensitivity Tests
5.
Trials ; 23(1): 864, 2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36209235

ABSTRACT

BACKGROUND: Rifampicin-resistant tuberculosis (RR-TB) remains an important global health problem. Ideally, the complete drug-resistance profile guides individualized treatment for all RR-TB patients, but this is only practised in high-income countries. Implementation of whole genome sequencing (WGS) technologies into routine care in low and middle-income countries has not become a reality due to the expected implementation challenges, including translating WGS results into individualized treatment regimen composition. METHODS: This trial is a pragmatic, single-blinded, randomized controlled medical device trial of a WGS-guided automated treatment recommendation strategy for individualized treatment of RR-TB. Subjects are 18 years or older and diagnosed with pulmonary RR-TB in four of the five health districts of the Free State province in South Africa. Participants are randomized in a 1:1 ratio to either the intervention (a WGS-guided automated treatment recommendation strategy for individualized treatment of RR-TB) or control (RR-TB treatment according to the national South African guidelines). The primary effectiveness outcome is the bacteriological response to treatment measured as the rate of change in time to liquid culture positivity during the first 6 months of treatment. Secondary effectiveness outcomes include cure rate, relapse rate (recurrence of RR-TB disease) and TB free survival rate in the first 12 months following RR-TB treatment completion. Additional secondary outcomes of interest include safety, the feasibility of province-wide implementation of the strategy into routine care, and health economic assessment from a patient and health systems perspective. DISCUSSION: This trial will provide important real-life evidence regarding the feasibility, safety, cost, and effectiveness of a WGS-guided automated treatment recommendation strategy for individualized treatment of RR-TB. Given the pragmatic nature, the trial will assist policymakers in the decision-making regarding the integration of next-generation sequencing technologies into routine RR-TB care in high TB burden settings. TRIAL REGISTRATION: ClinicalTrials.gov NCT05017324. Registered on August 23, 2021.


Subject(s)
Mycobacterium , Tuberculosis, Multidrug-Resistant , Algorithms , Antitubercular Agents/adverse effects , Clinical Trials, Phase IV as Topic , Humans , Neoplasm Recurrence, Local , Pragmatic Clinical Trials as Topic , Randomized Controlled Trials as Topic , Rifampin/adverse effects , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/drug therapy
6.
Antimicrob Agents Chemother ; 66(7): e0032222, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35758754

ABSTRACT

Studies have shown that variants in bedaquiline-resistance genes can occur in isolates from bedaquiline-naive patients. We assessed the prevalence of variants in all bedaquiline-candidate-resistance genes in bedaquiline-naive patients, investigated the association between these variants and lineage, and the effect on phenotype. We used whole-genome sequencing to identify variants in bedaquiline-resistance genes in isolates from 509 bedaquiline treatment naive South African tuberculosis patients. A phylogenetic tree was constructed to investigate the association with the isolate lineage background. Bedaquiline MIC was determined using the UKMYC6 microtiter assay. Variants were identified in 502 of 509 isolates (98.6%), with the highest (85%) prevalence of variants in the Rv0676c (mmpL5) gene. We identified 36 unique variants, including 19 variants not reported previously. Only four isolates had a bedaquiline MIC equal to or above the epidemiological cut-off value of 0.25 µg/mL. Phylogenetic analysis showed that 14 of the 15 variants observed more than once occurred monophyletically in one Mycobacterium tuberculosis (sub)lineage. The bedaquiline MIC differed between isolates belonging to lineage 2 and 4 (Fisher's exact test, P = 0.0004). The prevalence of variants in bedaquiline-resistance genes in isolates from bedaquiline-naive patients is high, but very few (<2%) isolates were phenotypically resistant. We found an association between variants in bedaquiline resistance genes and Mycobacterium tuberculosis (sub)lineage, resulting in a lineage-dependent difference in bedaquiline phenotype. Future studies should investigate the impact of the presence of variants on bedaquiline-resistance acquisition and treatment outcome.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Diarylquinolines/pharmacology , Humans , Microbial Sensitivity Tests , Mycobacterium tuberculosis/genetics , Phylogeny , Prevalence , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/microbiology
7.
BMC Med Inform Decis Mak ; 22(1): 56, 2022 03 02.
Article in English | MEDLINE | ID: mdl-35236355

ABSTRACT

BACKGROUND: Personalized medicine tailors care based on the patient's or pathogen's genotypic and phenotypic characteristics. An automated Clinical Decision Support System (CDSS) could help translate the genotypic and phenotypic characteristics into optimal treatment and thus facilitate implementation of individualized treatment by less experienced physicians. METHODS: We developed a hybrid knowledge- and data-driven treatment recommender CDSS. Stakeholders and experts first define the knowledge base by identifying and quantifying drug and regimen features for the prototype model input. In an iterative manner, feedback from experts is harvested to generate model training datasets, machine learning methods are applied to identify complex relations and patterns in the data, and model performance is assessed by estimating the precision at one, mean reciprocal rank and mean average precision. Once the model performance no longer iteratively increases, a validation dataset is used to assess model overfitting. RESULTS: We applied the novel methodology to develop a treatment recommender CDSS for individualized treatment of drug resistant tuberculosis as a proof of concept. Using input from stakeholders and three rounds of expert feedback on a dataset of 355 patients with 129 unique drug resistance profiles, the model had a 95% precision at 1 indicating that the highest ranked treatment regimen was considered appropriate by the experts in 95% of cases. Use of a validation data set however suggested substantial model overfitting, with a reduction in precision at 1 to 78%. CONCLUSION: Our novel and flexible hybrid knowledge- and data-driven treatment recommender CDSS is a first step towards the automation of individualized treatment for personalized medicine. Further research should assess its value in fields other than drug resistant tuberculosis, develop solid statistical approaches to assess model performance, and evaluate their accuracy in real-life clinical settings.


Subject(s)
Decision Support Systems, Clinical , Tuberculosis, Multidrug-Resistant , Humans , Knowledge Bases , Machine Learning , Precision Medicine , Tuberculosis, Multidrug-Resistant/drug therapy
9.
Nat Rev Microbiol ; 17(9): 533-545, 2019 09.
Article in English | MEDLINE | ID: mdl-31209399

ABSTRACT

Whole genome sequencing (WGS) of Mycobacterium tuberculosis has rapidly progressed from a research tool to a clinical application for the diagnosis and management of tuberculosis and in public health surveillance. This development has been facilitated by drastic drops in cost, advances in technology and concerted efforts to translate sequencing data into actionable information. There is, however, a risk that, in the absence of a consensus and international standards, the widespread use of WGS technology may result in data and processes that lack harmonization, comparability and validation. In this Review, we outline the current landscape of WGS pipelines and applications, and set out best practices for M. tuberculosis WGS, including standards for bioinformatics pipelines, curated repositories of resistance-causing variants, phylogenetic analyses, quality control and standardized reporting.


Subject(s)
Computational Biology/methods , Computational Biology/standards , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/isolation & purification , Tuberculosis/microbiology , Whole Genome Sequencing/methods , Whole Genome Sequencing/standards , Drug Resistance, Bacterial , Humans , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/standards , Molecular Epidemiology/methods , Molecular Epidemiology/standards , Mycobacterium tuberculosis/genetics , Phylogeny , Practice Guidelines as Topic , Tuberculosis/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...