Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Gastroenterol Hepatol ; 18(1): 89-104, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38556049

ABSTRACT

BACKGROUND & AIMS: Mounting evidence suggests the gastrointestinal microbiome is a determinant of peripheral immunity and central neurodegeneration, but the local disease mechanisms remain unknown. Given its potential relevance for early diagnosis and therapeutic intervention, we set out to map the pathogenic changes induced by bacterial amyloids in the gastrointestinal tract and its enteric nervous system. METHODS: To examine the early response, we challenged primary murine myenteric networks with curli, the prototypical bacterial amyloid, and performed shotgun RNA sequencing and multiplex enzyme-linked immunosorbent assay. Using enteric neurosphere-derived glial and neuronal cell cultures, as well as in vivo curli injections into the colon wall, we further scrutinized curli-induced pathogenic pathways. RESULTS: Curli induced a proinflammatory response, with strong up-regulation of Saa3 and the secretion of several cytokines. This proinflammatory state was induced primarily in enteric glia, was accompanied by increased levels of DNA damage and replication, and triggered the influx of immune cells in vivo. The addition of recombinant Serum Amyloid A3 (SAA3) was sufficient to recapitulate this specific proinflammatory phenotype while Saa3 knock-out attenuated curli-induced DNA damage and replication. Similar to curli, recombinant SAA3 caused a strong up-regulation of Saa3 transcripts, illustrating its self-amplifying potential . Since colonization of curli-producing Salmonella and dextran sulfate sodium-induced colitis triggered a significant increase in Saa3 transcripts as well, we assume SAA3plays a central role in enteric dysfunction. Inhibition of dual leucine zipper kinase, an upstream regulator of the c-Jun N-terminal kinase pathway responsible for SAA3 production, attenuated curli- and recombinant SAA3-induced Saa3 up-regulation, DNA damage, and replication in enteric glia. CONCLUSIONS: Our results position SAA3 as an important mediator of gastrointestinal vulnerability to bacterial-derived amyloids and demonstrate the potential of dual leucine zipper kinase inhibition to dampen enteric pathology.

2.
Aging Cell ; 23(5): e14120, 2024 May.
Article in English | MEDLINE | ID: mdl-38403918

ABSTRACT

Long considered to fluctuate between pro- and anti-inflammatory states, it has now become evident that microglia occupy a variegated phenotypic landscape with relevance to aging and neurodegeneration. However, whether specific microglial subsets converge in or contribute to both processes that eventually affect brain function is less clear. To investigate this, we analyzed microglial heterogeneity in a tauopathy mouse model (K18-seeded P301L) and an accelerated aging model (Senescence-Accelerated Mouse-Prone 8, SAMP8) using cellular indexing of transcriptomes and epitopes by sequencing. We found that widespread tau pathology in K18-seeded P301L mice caused a significant change in the number and morphology of microglia, but only a mild overrepresentation of disease-associated microglia. At the cell population-level, we observed a marked upregulation of the calprotectin-encoding genes S100a8 and S100a9. In 9-month-old SAMP8 mice, we identified a unique microglial subpopulation that showed partial similarity with the disease-associated microglia phenotype and was additionally characterized by a high expression of the same calprotectin gene set. Immunostaining for S100A8 revealed that this population was enriched in the hippocampus, correlating with the cognitive impairment observed in this model. However, incomplete colocalization between their residence and markers of neuronal loss suggests regional specificity. Importantly, S100A8-positive microglia were also retrieved in brain biopsies of human AD and tauopathy patients as well as in a biopsy of an aged individual without reported pathology. Thus, the emergence of S100A8-positive microglia portrays a conspicuous commonality between accelerated aging and tauopathy progression, which may have relevance for ensuing brain dysfunction.


Subject(s)
Aging , Brain , Calgranulin A , Microglia , Animals , Microglia/metabolism , Mice , Brain/metabolism , Brain/pathology , Calgranulin A/metabolism , Calgranulin A/genetics , Aging/metabolism , tau Proteins/metabolism , tau Proteins/genetics , Humans , Disease Models, Animal , Tauopathies/metabolism , Tauopathies/pathology , Male , Mice, Transgenic
3.
Am J Physiol Gastrointest Liver Physiol ; 324(4): G281-G294, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36749571

ABSTRACT

Animals involved in common laboratory procedures experience minor levels of stress. The direct effect of limited amounts of stress on gastrointestinal function has not been reported yet. Therefore, this study aimed to assess the effect of single-day and multi-day orogastric gavages on gut physiology in mice. To this end, 12-wk-old female C57Bl6/J mice were randomized to receive treatment with sterile water (200 µL) delivered by orogastric gavages twice daily for a total of 1 or 10 day(s). Control animals did not receive any treatment. Subsequently, gastrointestinal function was assessed by measuring fecal pellet production. Furthermore, ex vivo intestinal barrier and secretory function of the distal colon, proximal colon, and terminal ileum were quantified in Ussing chambers. In mice, single-day gavages did neither influence corticosterone levels nor gastrointestinal function. In mice exposed to multi-day gavages, corticosterone levels were slightly but significantly increased compared with controls after 10 days of treatment. Gastrointestinal motor function was altered, as evidenced by increased fecal pellet counts and a small increase in fecal water content. However, exposure to repeated gavages did not lead to detectable alterations in gastrointestinal barrier function as quantified by the paracellular flux of the probe 4 kDa FITC-dextran as well as transepithelial resistance measurements. Thus, the administration of drugs via single-day or multi-day orogastric gavages leads to no or minor stress in mice, respectively. In both cases, it does not hamper the study of the intestinal barrier function and therefore remains a valuable administration route in preclinical pharmacological research.NEW & NOTEWORTHY Exposure of mice to serial orogastric gavages over the course of 10 days leads to a small but significant increase in plasma corticosterone levels, indicating the presence of a limited amount of stress that is absent after a single-day treatment. This minor stress after multi-day gavages results in increased fecal pellet production and fecal water content in exposed compared with nontreated mice but does not affect the intestinal barrier function in the distal colon, proximal colon, or terminal ileum.


Subject(s)
Corticosterone , Intestinal Mucosa , Animals , Female , Mice , Colon , Corticosterone/pharmacology , Gastrointestinal Tract , Ileum , Permeability
SELECTION OF CITATIONS
SEARCH DETAIL
...