Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Am J Hematol ; 99(6): 1201-1204, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38563490

ABSTRACT

Glycolytic activity and in vitro effect of the pyruvate kinase activator AG-946 in red blood cells from low-risk myelodysplastic syndromes patients. Data showed decreased glycolytic activity in red blood cells of 2/3 of patients with lower-risk MDS. These results highlight a potential effect of the PK activator in this setting.


Subject(s)
Erythrocytes , Glycolysis , Myelodysplastic Syndromes , Pyruvate Kinase , Humans , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/blood , Glycolysis/drug effects , Erythrocytes/metabolism , Erythrocytes/drug effects , Aged , Male , Female , Middle Aged , Proof of Concept Study , Aged, 80 and over
2.
Front Immunol ; 14: 1221582, 2023.
Article in English | MEDLINE | ID: mdl-38022547

ABSTRACT

Autoimmune hemolytic anemia (AIHA) is due to autoantibodies with or without complement activation and involves cellular and cytokine dysregulation. Here, we investigated cytokine single-nucleotide polymorphisms (SNPs) of TNF-α, TGF-ß1, IL-10, IL-6, and IFN-γ, along with their serum levels. The former were related to hematological parameters, therapy, and clinical outcome. The study included 123 consecutive patients with primary AIHA [77 warm AIHA and 46 cold agglutinin disease (CAD)], followed up for a median of 49 months. Results show that the allelic frequency of TNF-α -308 G/A polymorphisms was significantly lower in patients versus controls. Moreover, the genotypic frequency of TNF-α -308G/A and TGF-ß gene codon 25 G/C genotypes was significantly lower in patients versus controls. Considering cytokine SNP genotypes associated with different gene expression levels, TNF-α high gene expression was significantly more frequent in patients, TGF-ß and IL-10 high gene expression was higher in patients with more severe anemia, and TGF-ß high gene expression was higher in patients with active disease. Considering treatment, TNF-α and TGF-ß high gene expression was more frequent in multitreated patients and particularly in CAD. It may be speculated that this genetic predisposition to a stronger inflammatory response may result in a greater immune dysregulation and in a relapsed/refractory disease. Regarding cytokine serum levels, TNF-α and TGF-ß were significantly lower, and IL-10 and IL-6 were significantly higher in patients versus controls, underlying the complex interplay between genetic background and disease features.


Subject(s)
Anemia, Hemolytic, Autoimmune , Cytokines , Humans , Cytokines/genetics , Interleukin-10/metabolism , Anemia, Hemolytic, Autoimmune/genetics , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6 , Interferon-gamma/genetics , Polymorphism, Single Nucleotide , Transforming Growth Factor beta/genetics , Chronic Disease
5.
Sci Rep ; 13(1): 4395, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36927785

ABSTRACT

Iron homeostasis and dyserythropoiesis are poorly investigated in pyruvate kinase deficiency (PKD), the most common glycolytic defect of erythrocytes. Herein, we studied the main regulators of iron balance and erythropoiesis, as soluble transferrin receptor (sTfR), hepcidin, erythroferrone (ERFE), and erythropoietin (EPO), in a cohort of 41 PKD patients, compared with 42 affected by congenital dyserythropoietic anemia type II (CDAII) and 50 with hereditary spherocytosis (HS). PKD patients showed intermediate values of hepcidin and ERFE between CDAII and HS, and clear negative correlations between log-transformed hepcidin and log-EPO (Person's r correlation coefficient = - 0.34), log-hepcidin and log-ERFE (r = - 0.47), and log-hepcidin and sTfR (r = - 0.44). sTfR was significantly higher in PKD; EPO levels were similar in PKD and CDAII, both higher than in HS. Finally, genotype-phenotype correlation in PKD showed that more severe patients, carrying non-missense/non-missense genotypes, had lower hepcidin and increased ERFE, EPO, and sTFR compared with the others (missense/missense and missense/non-missense), suggesting a higher rate of ineffective erythropoiesis. We herein investigated the main regulators of systemic iron homeostasis in the largest cohort of PKD patients described so far, opening new perspectives on the molecular basis and therapeutic approaches of this disease.


Subject(s)
Anemia, Hemolytic, Congenital Nonspherocytic , Anemia , Erythropoietin , Humans , Hepcidins/metabolism , Iron/metabolism , Anemia/drug therapy , Anemia, Hemolytic, Congenital Nonspherocytic/drug therapy , Erythropoiesis/genetics , Receptors, Transferrin
6.
Front Immunol ; 13: 1060923, 2022.
Article in English | MEDLINE | ID: mdl-36532073

ABSTRACT

More than half of patients with paroxysmal nocturnal hemoglobinuria (PNH) treated with complement fraction C5 inhibitors experience residual anemia and hemolysis. This is partly due to the persistent activation of the complement cascade upstream C5, resulting in C3 deposition on PNH erythrocytes and extravascular hemolysis in the reticuloendothelial system. Pegcetacoplan is the first proximal C3 inhibitor to be approved for PNH basing on favorable efficacy and safety data in both naïve and eculizumab treated PNH. Here we report the first Italian patient treated with pegcetacoplan in a named patient program. The patient suffered from hemolytic PNH associated with CALR+ myeloproliferative neoplasm and was heavily transfusion dependent despite eculizumab therapy. Treatment with pegcetacoplan induced a dramatic improvement in Hb, along with normalization of unconjugated bilirubin and reticulocytes, as markers of extravascular hemolysis. Sequential laboratory workup showed the disappearance of C3 deposition on erythrocytes by direct anti-globulin test, the increase of PNH clone on erythrocytes, and a peculiar right shift of the ektacytometry curve. The drug was well tolerated, and the patient reported a significant improvement in his quality of life. Overall, pegcetacoplan appears a safe and effective option "ready to use" in the clinic for patients with PNH and suboptimal response to anti-C5 agents.


Subject(s)
Hemoglobinuria, Paroxysmal , Humans , Hemoglobinuria, Paroxysmal/drug therapy , Hemolysis , Quality of Life , Complement C3 , Complement Inactivating Agents/therapeutic use , Complement C5
7.
J Blood Med ; 13: 461-471, 2022.
Article in English | MEDLINE | ID: mdl-36072510

ABSTRACT

Pyruvate kinase deficiency (PKD) is a rare autosomal recessive disease marked by chronic hemolytic anemia of various severity and frequent complications including gallstones, splenomegaly, iron overload, and others. Disease phenotype is highly heterogeneous and changes over time with children, adolescents and adult patients displaying different transfusion requirement and rates of complications. The diagnosis relies on the initial clinical suspicion in a patient with chronic hemolysis and exclusion of other more common congenital forms of hemolytic anemias; it is supported by the demonstration of reduced PK enzyme activity, and further confirmed by the detection of (homozygous or compound heterozygous) mutations of PKLR gene. Therapy is mainly supportive, with vitamin supplementation and transfusions (based on symptoms and patient growth rather than on fixed Hb thresholds). Splenectomy is widely performed, although it is less effective than in membrane defects and carries thrombotic and infectious risk. In the last decade, the allosteric PK enzyme activator mitapivat showed dramatic clinical benefit in clinical trials and gene therapy is also being studied to substitute the defective enzyme. In this review, we provide an insight in the current challenges of PKD diagnosis and management and discuss the future application of novel drugs and gene therapy, including a focus on quality of life.

8.
Front Physiol ; 13: 949044, 2022.
Article in English | MEDLINE | ID: mdl-36035481

ABSTRACT

We investigated by targeted next generation sequencing the genetic bases of hereditary spherocytosis in 25 patients and compared the molecular results with the biochemical lesion of RBC membrane obtained by SDS-PAGE analysis. The HS diagnosis was based on available guidelines for diagnosis of congenital hemolytic anemia, and patients were selected because of atypical clinical presentation or intra-family variability, or because presented discrepancies between laboratory investigation and biochemical findings. In all patients but 5 we identified pathogenic variants in SPTA1, SPTB, ANK1, SLC4A1, EPB42 genes able to justify the clinical phenotype. Interestingly, a correspondence between the biochemical lesion and the molecular defect was identified in only 11/25 cases, mostly with band 3 deficiency due to SLC4A1 mutations. Most of the mutations in SPTB and ANK1 gene didn't hesitate in abnormalities of RBC membrane protein; conversely, in two cases the molecular lesion didn't correspond to the biochemical defect, suggesting that a mutation in a specific cytoskeleton protein may result in a more complex RBC membrane damage or suffering. Finally, in two cases the HS diagnosis was maintained despite absence of both protein defect and molecular lesion, basing on clinical and family history, and on presence of clear laboratory markers of HS. The study revealed complex relationships between the primary molecular lesion and the final effect in the RBC membrane cytoskeleton, and further underlines the concept that there is not a unique approach to the diagnosis of HS.

9.
Br J Haematol ; 198(5): 912-915, 2022 09.
Article in English | MEDLINE | ID: mdl-35277856

ABSTRACT

We describe the clinical/haematological characteristics of 446 patients with hereditary spherocytosis diagnosed in the last 40 years in a reference centre. The frequency of splenectomy decreased over time (44% before 1990 to 7% in 2011-2020), notwithstanding a confirmed good efficacy. Age at splenectomy progressively increased (63% in children before 1990 to 88% in patients aged ≥20 years in 2011-2020). Our real-life experience showed that even a fraction of patients in the trait/mild categories (19/92, 21%) were splenectomised, whilst 30/78 (38%) in the moderate/severe groups were not. Overall, these data pinpoint to the increasing awareness about post-splenectomy thromboses and infections.


Subject(s)
Spherocytosis, Hereditary , Splenectomy , Child , Humans , Hyperplasia , Phenotype , Spherocytosis, Hereditary/diagnosis , Spherocytosis, Hereditary/surgery
10.
Front Physiol ; 12: 684569, 2021.
Article in English | MEDLINE | ID: mdl-34093240

ABSTRACT

Congenital hemolytic anemias (CHAs) are heterogeneous and rare disorders caused by alterations in structure, membrane transport, metabolism, or red blood cell production. The pathophysiology of these diseases, in particular the rarest, is often poorly understood, and easy-to-apply tools for diagnosis, clinical management, and patient stratification are still lacking. We report the 3-years monocentric experience with a 43 genes targeted Next Generation Sequencing (t-NGS) panel in diagnosis of CHAs; 122 patients from 105 unrelated families were investigated and the results compared with conventional laboratory pathway. Patients were divided in two groups: 1) cases diagnosed with hematologic investigations to be confirmed at molecular level, and 2) patients with unexplained anemia after extensive hematologic investigation. The overall sensitivity of t-NGS was 74 and 35% for families of groups 1 and 2, respectively. Inside this cohort of patients we identified 26 new pathogenic variants confirmed by functional evidence. The implementation of laboratory work-up with t-NGS increased the number of diagnoses in cases with unexplained anemia; cytoskeleton defects are well detected by conventional tools, deserving t-NGS to atypical cases; the diagnosis of Gardos channelopathy, some enzyme deficiencies, familial siterosterolemia, X-linked defects in females and other rare and ultra-rare diseases definitely benefits of t-NGS approaches.

11.
Expert Rev Hematol ; 14(3): 281-292, 2021 03.
Article in English | MEDLINE | ID: mdl-33543663

ABSTRACT

INTRODUCTION: Hereditary hemolytic anemias are a group of rare and heterogeneous disorders due to abnormalities in structure, metabolism, and transport functions of erythrocytes; they may overlap in clinical and hematological features making differential diagnosis difficult, particularly in mild and atypical forms. AREAS COVERED: In the present review, the main tools currently adopted in routine hematologic investigation for the diagnosis of hereditary hemolytic anemias are described, together with the new diagnostic approaches that are being to be developed in the next future. Available recommendations in this field together with a systematic review through MEDLINE, EMBASE, and PubMED for publications in English from 2000 to 2020 in regards to diagnostic aspects of hereditary hemolytic anemias have been considered. EXPERT OPINION: The recent development of specific molecules and treatments for hereditary hemolytic anemias and the increased interest in translational research raised the attention on differential diagnosis and the demand for novel diagnostic assays and devices. Automatic blood cell analyzers, omic-approaches including NGS technologies, and development of new automated tools based on artificial neural networks definitely represent the future strategies in this field.


Subject(s)
Anemia, Hemolytic, Congenital , Anemia, Hemolytic , Anemia, Hemolytic, Congenital/diagnosis , Diagnosis, Differential , Erythrocytes , Humans , Mass Screening
12.
Front Immunol ; 11: 1309, 2020.
Article in English | MEDLINE | ID: mdl-32655575

ABSTRACT

Congenital hemolytic anemias (CHAs) are a heterogeneous group of rare hereditary conditions including defects of erythrocyte membrane proteins, red cell enzymes, and disorders due to defective erythropoiesis. They are characterized by variable degree of anemia, chronic extravascular hemolysis, reduced erythrocyte life span, splenomegaly, jaundice, biliary lithiasis, and iron overload. Although few data are reported on the role of the immune system in CHAs, several immune-mediated mechanisms may be involved in the pathogenesis of these rare diseases. We reported in ~60% of patients with hereditary spherocytosis (HS), the presence of naturally-occurring autoantibodies (NAbs) directed against different membrane proteins (α- and ß-spectrin, band 3, and dematin). Positive HS subjects showed a more hemolytic pattern and NAbs were more evident in aged erythrocytes. The latter is in line with the function of NAbs in the opsonization of damaged/senescent erythrocytes and their consequent removal in the spleen. Splenectomy, usually performed to reduce erythrocyte catheresis and improve Hb levels, has different efficacy in various CHAs. Median Hb increase is 3 g/dL in HS, 1.6-1.8 g/dL in pyruvate kinase deficiency (PKD), and 1 g/dL in congenital dyserythropoietic anemias (CDA) type II. Consistently with clinical severity, splenectomy is performed in 20% of HS, 45% of CDAII, and in 60% of PKD patients. Importantly, sepsis and thrombotic events have been registered, particularly in PKD with a frequency of ~7% for both. Furthermore, we analyzed the role of pro-inflammatory cytokines and found that interleukin 10 and interferon γ, and to a lesser extent interleukin 6, were increased in all CHAs compared with controls. Moreover, CDAII and enzymatic defects showed increased tumor necrosis factor-α and reduced interleukin 17. Finally, we reported that iron overload occurred in 31% of patients with membrane defects, in ~60% of CDAII cases, and in up to 82% of PKD patients (defined by MRI liver iron concentration >4 mg Fe/gdw). Hepcidin was slightly increased in CHAs compared with controls and positively correlated with ferritin and with the inflammatory cytokines interleukin 6 and interferon γ. Overall the results suggest the existence of a vicious circle between chronic hemolysis, inflammatory response, bone marrow dyserythropoiesis, and iron overload.


Subject(s)
Anemia, Hemolytic, Congenital/immunology , Animals , Antibodies/immunology , Cytokines/immunology , Erythropoietin/immunology , Humans , Immune System , Iron/immunology , Spleen/immunology , Spleen/surgery , Splenectomy
14.
Front Physiol ; 10: 467, 2019.
Article in English | MEDLINE | ID: mdl-31133865

ABSTRACT

Glucose-6-phosphate isomerase (GPI, EC 5.3.1.9) is a dimeric enzyme that catalyzes the reversible isomerization of glucose-6-phosphate to fructose-6-phosphate, the second reaction step of glycolysis. GPI deficiency, transmitted as an autosomal recessive trait, is considered the second most common erythro-enzymopathy of anaerobic glycolysis, after pyruvate kinase deficiency. Despite this, this defect may sometimes be misdiagnosed and only about 60 cases of GPI deficiency have been reported. GPI deficient patients are affected by chronic non-spherocytic hemolytic anemia of variable severity; in rare cases, intellectual disability or neuromuscular symptoms have also been reported. The gene locus encoding GPI is located on chromosome 19q13.1 and contains 18 exons. So far, about 40 causative mutations have been identified. We report the clinical, hematological and molecular characteristics of 12 GPI deficient cases (eight males, four females) from 11 families, with a median age at admission of 13 years (ranging from 1 to 51); eight of them were of Italian origin. Patients displayed moderate to severe anemia, that improves with aging. Splenectomy does not always result in the amelioration of anemia but may be considered in transfusion-dependent patients to reduce transfusion intervals. None of the patients described here displayed neurological impairment attributable to the enzyme defect. We identified 13 different mutations in the GPI gene, six of them have never been described before; the new mutations affect highly conserved residues and were not detected in 1000 Genomes and HGMD databases and were considered pathogenic by several mutation algorithms. This is the largest series of GPI deficient patients so far reported in a single study. The study confirms the great heterogeneity of the molecular defect and provides new insights on clinical and molecular aspects of this disease.

15.
Br J Haematol ; 185(3): 523-531, 2019 05.
Article in English | MEDLINE | ID: mdl-30828802

ABSTRACT

Iron overload (IO) is poorly investigated in the congenital haemolytic anaemias (CHAs), a heterogeneous group of rare inherited diseases encompassing abnormalities of the erythrocyte membrane and metabolism, and defects of the erythropoiesis. In this study we systematically evaluated routine iron parameters and cardiac and hepatic magnetic resonance imaging, together with erythropoietin, hepcidin, non-transferrin bound iron (NTBI), and cytokine serum levels in patients with different CHAs. We found that 40% of patients had a liver iron concentration (LIC) >4 mg Fe/g dry weight. Hepatic IO was associated with ferritin levels (P = 0·0025), transferrin saturation (TfSat, P = 0·002) and NTBI (P = 0·003). Moreover, ferritin >500 µg/l plus TfSat >60% was demonstrated as the best combination able to identify increased LIC, and TfSat alteration as more important in cases with discordant values. Possible confounding factors, such as transfusions, hepatic disease, metabolic syndrome and hereditary haemochromatosis-associated mutations, had negligible effects on IO. Erythropoietin and hepcidin levels were increased in CHAs compared with controls, correlating with LIC and ferritin, respectively. Regarding cytokines, γ-interferon (IFN-γ) was increased, and both interleukin 6 and IFN-γ levels positively correlated with ferritin and hepcidin levels. Overall, these findings suggest the existence of a vicious cycle between chronic haemolysis, inflammatory response and IO in CHAs.


Subject(s)
Anemia, Hemolytic, Congenital , Ferritins/blood , Hepcidins/blood , Interferon-gamma/blood , Interleukin-6/blood , Iron Overload , Transferrin/metabolism , Adolescent , Adult , Anemia, Hemolytic, Congenital/blood , Anemia, Hemolytic, Congenital/complications , Child , Child, Preschool , Female , Follow-Up Studies , Humans , Iron Overload/blood , Iron Overload/etiology , Male , Predictive Value of Tests
16.
Front Physiol ; 9: 451, 2018.
Article in English | MEDLINE | ID: mdl-29755372

ABSTRACT

Chronic hemolytic anemias are a group of heterogeneous diseases mainly due to abnormalities of red cell (RBC) membrane and metabolism. The more common RBC membrane disorders, classified on the basis of blood smear morphology, are hereditary spherocytosis (HS), elliptocytosis, and hereditary stomatocytoses (HSt). Among RBC enzymopathies, the most frequent is pyruvate kinase (PK) deficiency, followed by glucose-6-phosphate isomerase, pyrimidine 5' nucleotidase P5'N, and other rare enzymes defects. Because of the rarity and heterogeneity of these diseases, diagnosis may be often challenging despite the availability of a variety of laboratory tests. The ektacytometer laser-assisted optical rotational cell analyser (LoRRca MaxSis), able to assess the RBC deformability in osmotic gradient conditions (Osmoscan analysis), is a useful diagnostic tool for RBC membrane disorders and in particular for the identification of hereditary stomatocytosis. Few data are so far available in other hemolytic anemias. We evaluated the diagnostic power of LoRRca MaxSis in a large series of 140 patients affected by RBC membrane disorders, 37 by enzymopathies, and 16 by congenital diserythropoietic anemia type II. Moreover, nine patients with paroxysmal nocturnal hemoglobinuria (PNH) were also investigated. All the hereditary spherocytoses, regardless the biochemical defect, showed altered Osmoscan curves, with a decreased Elongation Index (EI) max and right shifted Omin; hereditary elliptocytosis (HE) displayed a trapezoidal curve and decreased EImax. Dehydrated hereditary stomatocytosis (DHSt) caused by PIEZO1 mutations was characterized by left-shifted curve, whereas KCNN4 mutations were associated with a normal curve. Congenital diserythropoietic anemia type II and RBC enzymopathies had Osmoscan curve within the normal range except for glucosephosphate isomerase (GPI) deficient cases who displayed an enlarged curve associated with significantly increased Ohyper, offering a new diagnostic tool for this rare enzyme defect. The Osmoscan analysis performed by LoRRca MaxSis represents a useful and feasible first step screening test for specialized centers involved in the diagnosis of hemolytic anemias. However, the results should be interpreted by caution because different factors (i.e., splenectomy or coexistent diseases) may interfere with the analysis; additional tests or molecular investigations are therefore needed to confirm the diagnosis.

17.
Sci Rep ; 7(1): 1744, 2017 05 11.
Article in English | MEDLINE | ID: mdl-28496185

ABSTRACT

The Gardos channel is a Ca2+ sensitive, K+ selective channel present in several tissues including RBCs, where it is involved in cell volume regulation. Recently, mutations at two different aminoacid residues in KCNN4 have been reported in patients with hereditary xerocytosis. We identified by whole exome sequencing a new family with two members affected by chronic hemolytic anemia carrying mutation R352H in the KCNN4 gene. No additional mutations in genes encoding for RBCs cytoskeletal, membrane or channel proteins were detected. We performed functional studies on patients' RBCs to evaluate the effects of R352H mutation on the cellular properties and eventually on the clinical phenotype. Gardos channel hyperactivation was demonstrated in circulating erythrocytes and erythroblasts differentiated ex-vivo from peripheral CD34+ cells. Pathological alterations in the function of multiple ion transport systems were observed, suggesting the presence of compensatory effects ultimately preventing cellular dehydration in patient's RBCs; moreover, flow cytometry and confocal fluorescence live-cell imaging showed Ca2+ overload in the RBCs of both patients and hypersensitivity of Ca2+ uptake by RBCs to swelling. Altogether these findings suggest that the 'Gardos channelopathy' is a complex pathology, to some extent different from the common hereditary xerocytosis.


Subject(s)
Anemia, Hemolytic, Congenital/genetics , Channelopathies/genetics , Hydrops Fetalis/genetics , Mutation/genetics , Adenosine Triphosphate/metabolism , Adolescent , Adult , Calcium Signaling , Child , Erythrocytes/metabolism , Erythroid Precursor Cells/metabolism , Family , Female , Glycolysis , Humans , Infant , Inheritance Patterns/genetics , Intermediate-Conductance Calcium-Activated Potassium Channels/genetics , Male , Models, Biological , Pedigree , Sodium/metabolism
18.
Case Rep Hematol ; 2017: 2769570, 2017.
Article in English | MEDLINE | ID: mdl-28367341

ABSTRACT

Hereditary xerocytosis (HX) is a rare disorder caused by defects of RBC permeability, associated with haemolytic anaemia of variable degree and iron overload. It is sometimes misdiagnosed as hereditary spherocytosis or other congenital haemolytic anaemia. Splenectomy is contraindicated due to increased risk of thromboembolic complications. We report the clinical, haematological, and molecular characteristics of four patients from two unrelated Italian families affected by HX, associated with beta-thalassemia trait and heterozygous pyruvate kinase deficiency, respectively. Two patients had been splenectomised and displayed thrombotic episodes. All patients had iron overload in the absence of transfusion, two of them requiring iron chelation. The diagnosis of HX was confirmed by LoRRca Osmoscan analysis showing a left-shifted curve. PIEZO1 gene sequencing revealed the presence of mutation p.E2496ELE, showing that this is one of the most frequent mutations in this disease. The concomitant defects did not aggravate the clinical phenotype; however, in one patient, the initial diagnosis of pyruvate kinase deficiency delayed the correct diagnosis of HX for many years and resulted in splenectomy followed by thrombotic complications. The study underlines the importance of a precise diagnosis in HX, particularly in view of splenectomy, and the need of a molecular confirmation of suspected RBC enzymopathy.

19.
Pediatr Nephrol ; 32(12): 2253-2254, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28194571

ABSTRACT

A previously healthy 15-year-old girl was evaluated following five episodes of reddish urine discoloration after walking for approximately 30 min on a smooth roadway. In each episode, the discoloration lasted for four to five urinations and followed by normal urine dipstick tests. No other exercise-produced urine discoloration and no other symptoms were reported. Laboratory evaluation during the episodes revealed a reddish urine sample with 3+ hemoglobin/myoglobin and absence of hematuria. Full blood count, serum creatinine, liver function tests, and electrolyte levels were all within normal limits. Myoglobulinuria was excluded, since muscle enzymes were within normal limits. Blood smear analysis showed mild anisopoikilocytosis with stomatocytes and ovalocytes, leading to extended evaluation for erythrocyte disorders. This case is interesting in that the hemoglobinuria occurred after mild walking and was accompanied by erythrocyte morphological changes. This quiz discusses the differential diagnosis of hemoglobinuria with particular reference to the conditions of appearance (after walking) and emphasizes the importance of step-by-step investigations to reach a definitive diagnosis.


Subject(s)
Hemoglobinuria/diagnosis , Urine/chemistry , Adolescent , Diagnosis, Differential , Female , Hemoglobins , Humans , Walking
SELECTION OF CITATIONS
SEARCH DETAIL
...