Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
1.
Front Neuroanat ; 18: 1398400, 2024.
Article in English | MEDLINE | ID: mdl-39045347

ABSTRACT

Peripheral nerve damage often leads to the onset of neuropathic pain (NeuP). This condition afflicts millions of people, significantly burdening healthcare systems and putting strain on families' financial well-being. Here, we will focus on the role of peripheral sensory neurons, specifically the Dorsal Root Ganglia neurons (DRG neurons) in the development of NeuP. After axotomy, DRG neurons activate regenerative signals of axons-soma communication to promote a gene program that activates an axonal branching and elongation processes. The results of a neuronal morphological cytoskeleton change are not always associated with functional recovery. Moreover, any axonal miss-targeting may contribute to NeuP development. In this review, we will explore the epidemiology of NeuP and its molecular causes at the level of the peripheral nervous system and the target organs, with major focus on the neuronal cross-talk between intrinsic and extrinsic factors. Specifically, we will describe how failures in the neuronal regenerative program can exacerbate NeuP.

2.
Aging Dis ; 15(2): 893-910, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37548943

ABSTRACT

Sarcopenia is the primary cause of impaired motor performance in the elderly. The current prevailing approach to counteract such condition is increasing the muscle mass through inhibition of the myostatin system: however, this strategy only moderately improves muscular strength, not being able to sustain the innervation of the hypertrophic muscle per se, leading to a progressive worsening of motor performances. Thus, we proposed the administration of ActR-Fc-nLG3, a protein that combines the soluble activin receptor, a strong myostatin inhibitor, with the C-terminal agrin nLG3 domain. This compound has the potential of reinforcing neuro-muscular stability to the hypertrophic muscle. We previously demonstrated an enhancement of motor endurance and ACh receptor aggregation in young mice after ActR-Fc-nLG3 administration. Now we extended these observations by demonstrating that also in aged (2 years-old) mice, long-term administration of ActR-Fc-nLG3 increases in a sustained way both motor endurance and muscle strength, compared with ActR-Fc, a myostatin inhibitor, alone. Histological data demonstrate that the administration of this biological improves neuromuscular stability and fiber innervation maintenance, preventing muscle fiber atrophy and inducing only moderate hypertrophy. Moreover, at the postsynaptic site we observe an increased folding in the soleplate, a likely anatomical substrate for improved neurotransmission efficiency in the NMJ, that may lead to enhanced motor endurance. We suggest that ActR-Fc-nLG3 may become a valid option for treating sarcopenia and possibly other disorders of striatal muscles.


Subject(s)
Myostatin , Sarcopenia , Humans , Mice , Animals , Aged , Child, Preschool , Muscle, Skeletal/metabolism , Agrin/metabolism , Sarcopenia/drug therapy , Neuromuscular Junction/metabolism
3.
Lancet Neurol ; 22(5): 381, 2023 05.
Article in English | MEDLINE | ID: mdl-37060907
4.
J Neuroinflammation ; 20(1): 34, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36782185

ABSTRACT

BACKGROUND: One intrastriatal administration of quinolinic acid (QA) in rats induces a lesion with features resembling those observed in Huntington's disease. Our aim is to evaluate the effects of the cysteinyl leukotriene receptor antagonist montelukast (MLK), which exhibited neuroprotection in different preclinical models of neurodegeneration, on QA-induced neuroinflammation and regional metabolic functions. METHODS: The right and left striatum of Sprague Dawley and athymic nude rats were injected with QA and vehicle (VEH), respectively. Starting from the day before QA injection, animals were treated with 1 or 10 mg/kg of MLK or VEH for 14 days. At 14 and 30 days post-lesion, animals were monitored with magnetic resonance imaging (MRI) and positron emission tomography (PET) using [18F]-VC701, a translocator protein (TSPO)-specific radiotracer. Striatal neuroinflammatory response was measured post-mortem in rats treated with 1 mg/kg of MLK by immunofluorescence. Rats treated with 10 mg/kg of MLK also underwent a [18F]-FDG PET study at baseline and 4 months after lesion. [18F]-FDG PET data were then used to assess metabolic connectivity between brain regions by applying a covariance analysis method. RESULTS: MLK treatment was not able to reduce the QA-induced increase in striatal TSPO PET signal and MRI lesion volume, where we only detected a trend towards reduction in animals treated with 10 mg/kg of MLK. Post-mortem immunofluorescence analysis revealed that MLK attenuated the increase in striatal markers of astrogliosis and activated microglia in the lesioned hemisphere. We also found a significant increase in a marker of anti-inflammatory activity (MannR) and a trend towards reduction in a marker of pro-inflammatory activity (iNOS) in the lesioned striatum of MLK-compared to VEH-treated rats. [18F]-FDG uptake was significantly reduced in the striatum and ipsilesional cortical regions of VEH-treated rats at 4 months after lesion. MLK administration preserved glucose metabolism in these cortical regions, but not in the striatum. Finally, MLK was able to counteract changes in metabolic connectivity and measures of network topology induced by QA, in both lesioned and non-lesioned hemispheres. CONCLUSIONS: Overall, MLK treatment produced a significant neuroprotective effect by reducing neuroinflammation assessed by immunofluorescence and preserving regional brain metabolism and metabolic connectivity from QA-induced neurotoxicity in cortical and subcortical regions.


Subject(s)
Encephalitis , Neuroprotective Agents , Neurotoxicity Syndromes , Rats , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Rats, Sprague-Dawley , Quinolinic Acid/toxicity , Quinolinic Acid/metabolism , Fluorodeoxyglucose F18/metabolism , Neuroinflammatory Diseases , Corpus Striatum/metabolism , Neurotoxicity Syndromes/pathology , Encephalitis/pathology , Disease Models, Animal
5.
J Clin Med ; 12(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36835913

ABSTRACT

Von Economo neurons (VENs) are rod, stick, or corkscrew cells mostly located in layer V of the frontoinsular and anterior cingulate cortices. VENs are projection neurons related to human-like social cognitive abilities. Post-mortem histological studies found VEN alterations in several neuropsychiatric disorders, including schizophrenia (SZ). This pilot study aimed to evaluate the role of VEN-containing areas in shaping patterns of resting-state brain activation in patients with SZ (n = 20) compared to healthy controls (HCs; n = 20). We performed a functional connectivity analysis seeded in the cortical areas with the highest density of VENs followed by fuzzy clustering. The alterations found in the SZ group were correlated with psychopathological, cognitive, and functioning variables. We found a frontotemporal network that was shared by four clusters overlapping with the salience, superior-frontal, orbitofrontal, and central executive networks. Differences between the HC and SZ groups emerged only in the salience network. The functional connectivity of the right anterior insula and ventral tegmental area within this network were negatively correlated with experiential negative symptoms and positively correlated with functioning. This study provides some evidence to show that in vivo, VEN-enriched cortical areas are associated with an altered resting-state brain activity in people with SZ.

6.
Proc Natl Acad Sci U S A ; 120(2): e2216814120, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36603028

ABSTRACT

Spinal muscular atrophy (SMA) is a severe autosomal recessive neuromuscular disease affecting children and young adults, caused by mutations of the survival motor neuron 1 gene (SMN1). SMA is characterized by the degeneration of spinal alpha motor neurons (αMNs), associated with muscle paralysis and atrophy, as well as other peripheral alterations. Both growth hormone-releasing hormone (GHRH) and its potent agonistic analog, MR-409, exert protective effects on muscle atrophy, cardiomyopathies, ischemic stroke, and inflammation. In this study, we aimed to assess the protective role of MR-409 in SMNΔ7 mice, a widely used model of SMA. Daily subcutaneous treatment with MR-409 (1 or 2 mg/kg), from postnatal day 2 (P2) to euthanization (P12), increased body weight and improved motor behavior in SMA mice, particularly at the highest dose tested. In addition, MR-409 reduced atrophy and ameliorated trophism in quadriceps and gastrocnemius muscles, as determined by an increase in fiber size, as well as upregulation of myogenic genes and inhibition of proteolytic pathways. MR-409 also promoted the maturation of neuromuscular junctions, by reducing multi-innervated endplates and increasing those mono-innervated. Finally, treatment with MR-409 delayed αMN death and blunted neuroinflammation in the spinal cord of SMA mice. In conclusion, the present study demonstrates that MR-409 has protective effects in SMNΔ7 mice, suggesting that GHRH agonists are promising agents for the treatment of SMA, possibly in combination with SMN-dependent strategies.


Subject(s)
Growth Hormone-Releasing Hormone , Muscular Atrophy, Spinal , Animals , Mice , Atrophy/metabolism , Disease Models, Animal , Growth Hormone-Releasing Hormone/agonists , Motor Neurons/metabolism , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Spinal Cord/metabolism , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 1 Protein/metabolism
7.
Neurotherapeutics ; 20(2): 524-545, 2023 03.
Article in English | MEDLINE | ID: mdl-36717478

ABSTRACT

Spinal and bulbar muscular atrophy (SBMA) is characterized by motor neuron (MN) degeneration that leads to slowly progressive muscle weakness. It is considered a neuromuscular disease since muscle has a primary role in disease onset and progression. SBMA is caused by a CAG triplet repeat expansion in the androgen receptor (AR) gene. The translated poly-glutamine (polyQ) tract confers a toxic gain of function to the mutant AR altering its folding, causing its aggregation into intracellular inclusions, and impairing the autophagic flux. In an in vitro SBMA neuronal model, we previously showed that the antiandrogen bicalutamide and trehalose, a natural disaccharide stimulating autophagy, block ARpolyQ activation, reduce its nuclear translocation and toxicity and facilitate the autophagic degradation of cytoplasmic AR aggregates. Here, in a knock-in SBMA mouse model (KI AR113Q), we show that bicalutamide and trehalose ameliorated SBMA pathology. Bicalutamide reversed the formation of the AR insoluble forms in KI AR113Q muscle, preventing autophagic flux blockage. We demonstrated that apoptosis is activated in KI AR113Q muscle, and that both compounds prevented its activation. We detected a decrease of mtDNA and an increase of OXPHOS enzymes, already at early symptomatic stages; these alterations were reverted by trehalose. Overall, bicalutamide and/or trehalose led to a partial recovery of muscle morphology and function, and improved SBMA mouse motor behavior, inducing an extension of their survival. Thus, bicalutamide and trehalose, by counteracting ARpolyQ toxicity in skeletal muscle, are valuable candidates for future clinical trials in SBMA patients.


Subject(s)
Bulbo-Spinal Atrophy, X-Linked , Muscular Atrophy, Spinal , Mice , Animals , Bulbo-Spinal Atrophy, X-Linked/drug therapy , Bulbo-Spinal Atrophy, X-Linked/genetics , Trehalose/pharmacology , Trehalose/therapeutic use , Receptors, Androgen/genetics , Anilides/pharmacology , Mice, Transgenic
8.
J Alzheimers Dis ; 90(4): 1381-1393, 2022.
Article in English | MEDLINE | ID: mdl-36278349

ABSTRACT

BACKGROUND: Synaptic disruption precedes neuronal death and correlates with clinical features of Alzheimer's disease (AD). The identification of fluid biomarkers of synaptic damage is emerging as a goal for early and accurate diagnosis of the disease. OBJECTIVE: To perform a systematic review and meta-analysis to determine whether fluid biomarkers of synaptic damage are impaired in AD. METHODS: PubMed, Scopus, EMBASE, and Web of Science were searched for articles reporting synaptic proteins as fluid biomarkers in AD and cognitively unimpaired (CU) individuals. Pooled effect sizes were determined using the Hedge G method with random effects. Questions adapted from the Quality Assessment of Diagnostic Accuracy Studies were applied for quality assessment. A protocol for this study has been previously registered in PROSPERO (registration number: CRD42021277487). RESULTS: The search strategy identified 204 articles that were assessed for eligibility. A total of 23 studies were included in the systematic review and 15 were included in the meta-analysis. For Neurogranin, 827 AD and 1,237 CU subjects were included in the meta-analysis, showing a significant increase in cerebrospinal fluid of patients with AD compared to CU individuals, with an effect size of 1.01 (p < 0.001). A significant increase in SNAP-25 and GAP-43 levels in CSF of patients with AD was observed. CONCLUSION: Neurogranin, SNAP-25, and GAP-43 are possible biomarkers of synaptic damage in AD, and other potential synaptic biomarkers are emerging. This meta-analysis also revealed that there are still relatively few studies investigating these biomarkers in patients with AD or other dementias and showed wide heterogeneity in literature.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/cerebrospinal fluid , GAP-43 Protein , Neurogranin/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Cognitive Dysfunction/diagnosis
9.
Front Psychiatry ; 13: 981475, 2022.
Article in English | MEDLINE | ID: mdl-36311526

ABSTRACT

Malingering of cognitive difficulties constitutes a major issue in psychiatric forensic settings. Here, we present a selective literature review related to the topic of cognitive malingering, psychopathology and their possible connections. Furthermore, we report a single case study of a 60-year-old man with a long and ongoing judicial history who exhibits a suspicious multi-domain neurocognitive disorder with significant reduction of autonomy in daily living, alongside a longtime history of depressive symptoms. Building on this, we suggest the importance of evaluating malingering conditions through both psychiatric and neuropsychological assessment tools. More specifically, the use of Performance Validity Tests (PVTs)-commonly but not quite correctly considered as tests of "malingering"-alongside the collection of clinical history and the use of routine psychometric testing, seems to be crucial in order to detect discrepancies between self-reported patient's symptoms, embedded validity indicators and psychometric results.

10.
Trans R Soc Trop Med Hyg ; 116(2): 157-162, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34323274

ABSTRACT

BACKGROUND: Cystic echinococcosis (CE) is a chronic, complex and neglected infection that may cause serious disease in humans. Given its peculiar epidemiologic and clinical features, collection of clinical data is challenging. Notification systems, when available, fail to record important clinical features, available data are mostly retrospectively collected and no prospectively enrolled uniform surveillance systems exist. The European Register of Cystic Echinococcosis database (ERCE) is the first systematic attempt to address these issues. METHODS: Here, we describe the demographics and clinical characteristics of 436 patients who accessed the CE clinic at the University of Pavia-San Matteo Hospital Foundation, in Pavia, Italy, from March 2012 to February 2020. RESULTS: Overall, 436 patients, consisting of 204 (46.8%) males and 232 (53.2%) females were enrolled; the mean age at enrollment was 50 (range 4-88) y. Of the 436 patients, 248 (56.9%) were born in Italy while 188 (43.1%) were foreign-born. In total, 638 CE cysts were counted, most of them in the CE4 (230; 36.1%) and CE3b (131; 20.5%) stages. CONCLUSIONS: This is the largest cohort of CE patients with detailed clinical and demographic data published to date. We strongly encourage colleagues caring for CE patients in the European Union to join the ERCE.


Subject(s)
Echinococcosis , Echinococcus granulosus , Animals , Echinococcosis/epidemiology , Female , Humans , Italy/epidemiology , Male , Prospective Studies , Registries , Retrospective Studies
11.
Eur J Histochem ; 65(s1)2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34734684

ABSTRACT

Spinal muscular atrophy (SMA) is a severe neuromuscular disease affecting children, due to mutation/deletion of survival motor neuron 1 (SMN1) gene. The lack of functional protein SMN determines motor neuron (MN) degeneration and skeletal muscle atrophy, leading to premature death due to respiratory failure. Nowadays, the Food and Drug Administration approved the administration of three drugs, aiming at increasing the SMN production: although assuring noteworthy results, all these therapies show some non-negligible limitations, making essential the identification of alternative/synergistic therapeutic strategies. To offer a valuable in vitro experimental model for easily performing preliminary screenings of alternative promising treatments, we optimized an organotypic spinal cord culture (derived from murine spinal cord slices), which well recapitulates the pathogenetic features of SMA. Then, to validate the model, we tested the effects of human Mesenchymal Stem Cells (hMSCs) or murine C2C12 cells (a mouse skeletal myoblast cell line) conditioned media: 1/3 of conditioned medium (obtained from either hMSCs or C2C12 cells) was added to the conventional medium of the organotypic culture and maintained for 7 days. Then the slices were fixed and immunoreacted to evaluate the MN survival. In particular we observed that the C2C12 and hMSCs conditioned media positively influenced the MN soma size and the axonal length respectively, without modulating the glial activation. These data suggest that trophic factors released by MSCs or muscular cells can exert beneficial effects, by acting on different targets, and confirm the reliability of the model. Overall, we propose the organotypic spinal cord culture as an excellent tool to preliminarily screen molecules and drugs before moving to in vivo models, in this way partly reducing the use of animals and the costs.


Subject(s)
Culture Media, Conditioned/pharmacology , Disease Models, Animal , Muscular Atrophy, Spinal/drug therapy , Spinal Cord/drug effects , Animals , Animals, Genetically Modified , Cell Culture Techniques , Cell Line , Humans , Mesenchymal Stem Cells/metabolism , Mice , Muscular Atrophy, Spinal/physiopathology , Proof of Concept Study , Spinal Cord/metabolism , Survival of Motor Neuron 2 Protein/genetics
12.
Front Cell Dev Biol ; 9: 748911, 2021.
Article in English | MEDLINE | ID: mdl-34722529

ABSTRACT

Spinal cord injury (SCI) is a devastating lesion to the spinal cord, which determines the interruption of ascending/descending axonal tracts, the loss of supraspinal control of sensory-motor functions below the injured site, and severe autonomic dysfunctions, dramatically impacting the quality of life of the patients. After the acute inflammatory phase, the progressive formation of the astrocytic glial scar characterizes the acute-chronic phase: such scar represents one of the main obstacles to the axonal regeneration that, as known, is very limited in the central nervous system (CNS). Unfortunately, a cure for SCI is still lacking: the current clinical approaches are mainly based on early vertebral column stabilization, anti-inflammatory drug administration, and rehabilitation programs. However, new experimental therapeutic strategies are under investigation, one of which is to stimulate axonal regrowth and bypass the glial scar. One major issue in axonal regrowth consists of the different genetic programs, which characterize axonal development and maturation. Here, we will review the main hurdles that in adulthood limit axonal regeneration after SCI, describing the key genes, transcription factors, and miRNAs involved in these processes (seen their reciprocal influencing action), with particular attention to corticospinal motor neurons located in the sensory-motor cortex and subjected to axotomy in case of SCI. We will highlight the functional complexity of the neural regeneration programs. We will also discuss if specific axon growth programs, that undergo a physiological downregulation during CNS development, could be reactivated after a spinal cord trauma to sustain regrowth, representing a new potential therapeutic approach.

13.
Sci Rep ; 11(1): 7264, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33790350

ABSTRACT

During Central Nervous System ontogenesis, myelinating oligodendrocytes (OLs) arise from highly ramified and proliferative precursors called oligodendrocyte progenitor cells (OPCs). OPC architecture, proliferation and oligodendro-/myelino-genesis are finely regulated by the interplay of cell-intrinsic and extrinsic factors. A variety of extrinsic cues converge on the extracellular signal-regulated kinase/mitogen activated protein kinase (ERK/MAPK) pathway. Here we found that the germinal ablation of the MAPK c-Jun N-Terminal Kinase isoform 1 (JNK1) results in a significant reduction of myelin in the cerebral cortex and corpus callosum at both postnatal and adult stages. Myelin alterations are accompanied by higher OPC density and proliferation during the first weeks of life, consistent with a transient alteration of mechanisms regulating OPC self-renewal and differentiation. JNK1 KO OPCs also show smaller occupancy territories and a less complex branching architecture in vivo. Notably, these latter phenotypes are recapitulated in pure cultures of JNK1 KO OPCs and of WT OPCs treated with the JNK inhibitor D-JNKI-1. Moreover, JNK1 KO and WT D-JNKI-1 treated OLs, while not showing overt alterations of differentiation in vitro, display a reduced surface compared to controls. Our results unveil a novel player in the complex regulation of OPC biology, on the one hand showing that JNK1 ablation cell-autonomously determines alterations of OPC proliferation and branching architecture and, on the other hand, suggesting that JNK1 signaling in OLs participates in myelination in vivo.


Subject(s)
Cell Proliferation , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase 8/metabolism , Myelin Sheath/metabolism , Oligodendrocyte Precursor Cells/enzymology , Oligodendroglia/enzymology , Animals , Mice , Mice, Knockout , Mitogen-Activated Protein Kinase 8/genetics , Myelin Sheath/genetics
14.
Front Mol Biosci ; 8: 618869, 2021.
Article in English | MEDLINE | ID: mdl-33869277

ABSTRACT

Spinal cord injury (SCI) affects 6 million people worldwide with no available treatment. Despite research advances, the inherent poor regeneration potential of the central nervous system remains a major hurdle. Small RNAs (sRNAs) 19-33 nucleotides in length are a set of non-coding RNA molecules that regulate gene expression and have emerged as key players in regulating cellular events occurring after SCI. Here we profiled a class of sRNA known as microRNAs (miRNAs) following SCI in the cortex where the cell bodies of corticospinal motor neurons are located. We identified miR-7b-3p as a candidate target given its significant upregulation after SCI in vivo and we screened by miRWalk PTM the genes predicted to be targets of miR-7b-3p (among which we identified Wipf2, a gene regulating neurite extension). Moreover, 16 genes, involved in neural regeneration and potential miR-7b-3p targets, were found to be downregulated in the cortex following SCI. We also analysed miR-7b-3p function during cortical neuron development in vitro: we observed that the overexpression of miR-7b-3p was important (1) to maintain neurons in a more immature and, likely, plastic neuronal developmental phase and (2) to contrast the apoptotic pathway; however, in normal conditions it did not affect the Wipf2 expression. On the contrary, the overexpression of miR-7b-3p upon in vitro oxidative stress condition (mimicking the SCI environment) significantly reduced the expression level of Wipf2, as observed in vivo, confirming it as a direct miR-7b-3p target. Overall, these data suggest a dual role of miR-7b-3p: (i) the induction of a more plastic neuronal condition/phase, possibly at the expense of the axon growth, (ii) the neuroprotective role exerted through the inhibition of the apoptotic cascade. Increasing the miR-7b-3p levels in case of SCI could reactivate in adult neurons silenced developmental programmes, supporting at the same time the survival of the axotomised neurons.

15.
Age Ageing ; 50(4): 1261-1267, 2021 06 28.
Article in English | MEDLINE | ID: mdl-33480986

ABSTRACT

INTRODUCTION: Prevention of frailty is paramount in older adults. We evaluated the efficacy of a tailored multidomain intervention, monitored with the My Active and Healthy Aging platform, in reducing conversion from a prefrail status to overt frailty and preventing decline in quality of life. METHODS: We performed a multicentre, multicultural, randomised control study. The effects of multidomain interventions on frailty parameters, quality of life, physical, cognitive, psychosocial function, nutrition and sleep were evaluated in a group of 101 prefrail older subjects and compared with 100 prefrail controls, receiving general health advice. RESULTS: At the 12-month assessment, controls showed a decline in quality of life that was absent in the active group. In addition, active participants showed an increase in mood and nutrition function. No effect on remaining parameter was observed. DISCUSSION: Our study supports the use of personalised multidomain intervention, monitored with an information and communication technology platform, in preventing quality of life decline in older adults.


Subject(s)
Frailty , Healthy Aging , Aged , Frailty/diagnosis , Frailty/prevention & control , Humans , Nutritional Status , Quality of Life , Research Design
16.
Int J Mol Sci ; 22(2)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33430035

ABSTRACT

Traumatic peripheral nerve lesions affect hundreds of thousands of patients every year; their consequences are life-altering and often devastating and cause alterations in movement and sensitivity. Spontaneous peripheral nerve recovery is often inadequate. In this context, nowadays, cell therapy represents one of the most innovative approaches in the field of nerve repair therapies. The purpose of this systematic review is to discuss the features of different types of mesenchymal stem cells (MSCs) relevant for peripheral nerve regeneration after nerve injury. The published literature was reviewed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A combination of the keywords "nerve regeneration", "stem cells", "peripheral nerve injury", "rat", and "human" were used. Additionally, a "MeSH" research was performed in PubMed using the terms "stem cells" and "nerve regeneration". The characteristics of the most widely used MSCs, their paracrine potential, targeted stimulation, and differentiation potentials into Schwann-like and neuronal-like cells are described in this paper. Considering their ability to support and stimulate axonal growth, their remarkable paracrine activity, their presumed differentiation potential, their extremely low immunogenicity, and their high survival rate after transplantation, ADSCs appear to be the most suitable and promising MSCs for the recovery of peripheral nerve lesion. Clinical considerations are finally reported.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/physiology , Nerve Regeneration/physiology , Peripheral Nerves/physiology , Animals , Cell Differentiation , Humans , Nerve Regeneration/genetics , Rats , Schwann Cells/physiology , Sciatic Nerve/growth & development
17.
Neuroimage ; 225: 117481, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33122115

ABSTRACT

Brain disorders tend to impact on many different regions in a typical way: alterations do not spread randomly; rather, they seem to follow specific patterns of propagation that show a strong overlap between different pathologies. The insular cortex is one of the brain areas more involved in this phenomenon, as it seems to be altered by a wide range of brain diseases. On these grounds we thoroughly investigated the impact of brain disorders on the insular cortices analyzing the patterns of their structural co-alteration. We therefore investigated, applying a network analysis approach to meta-analytic data, 1) what pattern of gray matter alteration is associated with each of the insular cortex parcels; 2) whether or not this pattern correlates and overlaps with its functional meta-analytic connectivity; and, 3) the behavioral profile related to each insular co-alteration pattern. All the analyses were repeated considering two solutions: one with two clusters and another with three. Our study confirmed that the insular cortex is one of the most altered cerebral regions among the cortical areas, and exhibits a dense network of co-alteration including a prevalence of cortical rather than sub-cortical brain regions. Regions of the frontal lobe are the most involved, while occipital lobe is the less affected. Furthermore, the co-alteration and co-activation patterns greatly overlap each other. These findings provide significant evidence that alterations caused by brain disorders are likely to be distributed according to the logic of network architecture, in which brain hubs lie at the center of networks composed of co-altered areas. For the first time, we shed light on existing differences between insula sub-regions even in the pathoconnectivity domain.


Subject(s)
Brain Diseases/physiopathology , Cerebral Cortex/physiopathology , Nerve Net/physiopathology , Brain/physiopathology , Brain Mapping , Connectome , Gray Matter/physiopathology , Humans , Magnetic Resonance Imaging , Nerve Net/physiology , Occipital Lobe/physiopathology
18.
Front Neuroanat ; 14: 572013, 2020.
Article in English | MEDLINE | ID: mdl-33013330

ABSTRACT

Onuf's nucleus is a small group of neurons located in the ventral horns of the sacral spinal cord. The motor neurons (MNs) of Onuf's nucleus innervate striated voluntary muscles of the pelvic floor and are histologically and biochemically comparable to the other somatic spinal MNs. However, curiously, these neurons also show some autonomic-like features as, for instance, they receive a strong peptidergic innervation. The review provides an overview of the histological, biochemical, metabolic, and gene expression peculiarities of Onuf's nucleus. Moreover, it describes the aging-related pathologies as well as several traumatic and neurodegenerative disorders in which its neurons are involved: indeed, Onuf's nucleus is affected in Parkinson's disease (PD) and Shy-Drager Syndrome (SDS), whereas it is spared in Amyotrophic Lateral Sclerosis (ALS), Spinal Muscular Atrophy (SMA), Duchenne Muscular Dystrophy (DMD). We summarize here the milestone studies that have contributed to clarifying the nature of Onuf's neurons and in understanding what makes them either vulnerable or resistant to damage. Altogether, these works can offer the possibility to develop new therapeutic strategies for counteracting neurodegeneration.

19.
Stem Cells Int ; 2020: 8883616, 2020.
Article in English | MEDLINE | ID: mdl-33082789

ABSTRACT

In recent years, various studies have followed in the literature on the therapeutic effects of mesenchymal stem cells (MSC) on damage in retinal cells. The evidence that MSCs exert their regenerative and damage reduction effect in a paracrine way, through the release of soluble factors and exosomes, is now consolidated. Exosomes are microvesicles formed by a double layer of phospholipid membrane and carry proteins and RNA, through which they play a therapeutic role on target cells. Scientific research has recently focused on the use of exosomes derived from MSC in various models of retinal damage in vitro and in vivo as they, compared to MSCs, have similar functions and at the same time have different advantages such as greater stability and handling, a lower chance of immunological rejection and no risk of malignant transformation. The purpose of this review is to summarize current knowledge on the therapeutic use of exosomes derived from MSCs in retinal damage and to stimulate new clinical perspectives regarding their use.

20.
Int J Mol Sci ; 21(10)2020 May 25.
Article in English | MEDLINE | ID: mdl-32466216

ABSTRACT

Mitochondria play a central role in a plethora of processes related to the maintenance of cellular homeostasis and genomic integrity. They contribute to preserving the optimal functioning of cells and protecting them from potential DNA damage which could result in mutations and disease. However, perturbations of the system due to senescence or environmental factors induce alterations of the physiological balance and lead to the impairment of mitochondrial functions. After the description of the crucial roles of mitochondria for cell survival and activity, the core of this review focuses on the "mitochondrial switch" which occurs at the onset of neuronal degeneration. We dissect the pathways related to mitochondrial dysfunctions which are shared among the most frequent or disabling neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's, Amyotrophic Lateral Sclerosis, and Spinal Muscular Atrophy. Can mitochondrial dysfunctions (affecting their morphology and activities) represent the early event eliciting the shift towards pathological neurobiological processes? Can mitochondria represent a common target against neurodegeneration? We also review here the drugs that target mitochondria in neurodegenerative diseases.


Subject(s)
Alzheimer Disease/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Mitochondria/metabolism , Muscular Atrophy, Spinal/metabolism , Parkinson Disease/metabolism , Alzheimer Disease/drug therapy , Amyotrophic Lateral Sclerosis/drug therapy , Animals , Antioxidants/therapeutic use , Humans , Mitochondria/pathology , Muscular Atrophy, Spinal/drug therapy , Neuroprotective Agents/therapeutic use , Organelle Biogenesis , Parkinson Disease/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...