Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Opin Biotechnol ; 87: 103102, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38461750

ABSTRACT

Microbial consortia are important for the fermentation of foods. They bring combined functionalities to the fermented product, but stability and product consistency of fermentations with complex consortia can be hard to control. Some of these consortia, such as water- and milk-kefir and kombucha, grow as multispecies aggregates or biofilms, in which micro-organisms taking part in a fermentation cascade are spatially organized. The spatial organization of micro-organisms in these aggregates can impact what metabolic interactions are realized in the consortia, ultimately affecting the growth dynamics and evolution of microbes. A better understanding of such spatially structured communities is of interest from the perspective of microbial ecology and biotechnology, as multispecies aggregates can be used to valorize energy-rich substrates, such as plant-based substrates or side streams from the food industry.


Subject(s)
Fermentation , Food Microbiology , Microbial Consortia , Microbial Consortia/physiology
2.
Proc Natl Acad Sci U S A ; 119(52): e2210995119, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36538486

ABSTRACT

Predators and their foraging strategies often determine ecosystem structure and function. Yet, the role of protozoan predators in microbial soil ecosystems remains elusive despite the importance of these ecosystems to global biogeochemical cycles. In particular, amoebae-the most abundant soil protozoan predator of bacteria-remineralize soil nutrients and shape the bacterial community. However, their foraging strategies and their role as microbial ecosystem engineers remain unknown. Here, we present a multiscale approach, connecting microscopic single-cell analysis and macroscopic whole ecosystem dynamics, to expose a phylogenetically widespread foraging strategy, in which an amoeba population spontaneously partitions between cells with fast, polarized movement and cells with slow, unpolarized movement. Such differentiated motion gives rise to efficient colony expansion and consumption of the bacterial substrate. From these insights, we construct a theoretical model that predicts how disturbances to amoeba growth rate and movement disrupt their predation efficiency. These disturbances correspond to distinct classes of bacterial defenses, which allows us to experimentally validate our predictions. All considered, our characterization of amoeba foraging identifies amoeba mobility, and not amoeba growth, as the core determinant of predation efficiency and a key target for bacterial defense systems.


Subject(s)
Ecosystem , Soil , Animals , Population Dynamics , Models, Theoretical , Bacteria , Predatory Behavior/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...