Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
AJNR Am J Neuroradiol ; 44(6): 668-674, 2023 06.
Article in English | MEDLINE | ID: mdl-37169543

ABSTRACT

BACKGROUND AND PURPOSE: Bioresorbable flow diverters are under development to mitigate complications associated with conventional flow-diverter technology. One proposed advantage is the ability to reduce metal-induced artifacts in follow-up medical imaging. In the current work, the medical imaging compatibility of magnesium- and iron-based bioresorbable flow diverters is assessed relative to an FDA-approved control in phantom models. MATERIALS AND METHODS: Bioresorbable flow diverters, primarily composed of braided magnesium or antiferromagnetic iron alloy wires, were compared with an FDA-approved control flow diverter. The devices were assessed for MR imaging safety in terms of magnetically induced force and radiofrequency heating using 1.5T, 3T, and 7T field strength clinical scanners. The devices were deployed in phantom models, and metal-induced image artifacts were assessed in the 3 MR imaging scanners and a clinical CT scanner following clinical scan protocols; device visibility was assessed under fluoroscopy. RESULTS: The magnesium-based bioresorbable flow diverter, iron-based bioresorbable flow diverter, and the control device all demonstrated MR imaging safety in terms of magnetically induced force and radiofrequency heating at all 3 field strengths. The bioresorbable flow diverters did not elicit excessive MR imaging artifacts at any field strength relative to the control. Furthermore, the bioresorbable flow diverters appeared to reduce blooming artifacts in CT relative to the control. The iron-based bioresorbable flow diverter and control device were visible under standard fluoroscopy. CONCLUSIONS: We have demonstrated the baseline medical imaging compatibility of magnesium and antiferromagnetic iron alloy bioresorbable flow diverters. Future work will evaluate the medical imaging characteristics of the bioresorbable flow diverters in large-animal models.


Subject(s)
Intracranial Aneurysm , Animals , Intracranial Aneurysm/diagnostic imaging , Magnesium , Iron , Absorbable Implants , Radiography , Alloys
2.
Ann Biomed Eng ; 47(5): 1281-1290, 2019 May.
Article in English | MEDLINE | ID: mdl-30734145

ABSTRACT

The branching architecture of arterial trees traversing the thickness of the left ventricular wall is studied to determine the way in which adequate blood supply is provided to myocardial tissue at different depths within the wall thickness from arterial trees originating at the epicardial surface. The study is based on micro-CT images of tissue biopsies, coupled with a dedicated vascular tree analysis program. The results show that this combination of methodologies allows a more detailed and much more accurate exploration of the vasculature within the sampled tissue than is possible by histological means. The spatial density of the smallest resolvable "end" arterioles is found to be higher in the sub-endocardial region than in the sub-epicardial region, with vascular branching architecture consistent with a fractal structure. The concept of "transit time" is introduced as an approximate measure of the time it takes bulk flow to reach different regions of the myocardium. Our data suggest that a transit time differential is a major contributor to the equalization of transmural perfusion gradient against unequal distribution of "end' arteriolar density.


Subject(s)
Heart Ventricles/diagnostic imaging , Models, Cardiovascular , Myocardium , Pericardium/diagnostic imaging , Pericardium/physiology , Animals , Swine , X-Ray Microtomography
3.
IEEE Trans Med Imaging ; 27(4): 569-75, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18390353

ABSTRACT

Variation in computed tomography (CT) image gray-scale and spatial geometry due to specimen orientation, magnification, voxel size, differences in X-ray photon energy and limited field-of-view during the scan, were evaluated in repeated micro-CT scans of iliac crest biopsies and test phantoms. Using the micro-CT scanner on beamline X2B at the Brookhaven National Laboratory's National Synchrotron Light Source, 3-D micro-CT images were generated. They consisted of up to 1024 x 2400(2), 4-microm cubic voxels, each with 16-bit gray-scale. We also reconstructed the images at 16-, 32-, and 48-microm voxel resolution. Scan data were reconstructed from the complete profiles using filtered back-projection and from truncated profiles using profile-extension and with a Local reconstruction algorithm. Three biopsies and one bone-like test phantom were each rescanned at three different times at annual intervals. For the full-data-set reconstructions, the reproducibility of the estimates of mineral content of bone at mean bone opacity value, was +/-28.8, i.e., 2.56%, in a 4-microm cubic voxel at the 95% confidence level. The reproducibility decreased with increased voxel size. The interscan difference in imaged bone volume ranged from 0.86 4-microm 0.64% at 4-microm voxel resolution, and 2.64 4-microm 2.48% at 48 microm.


Subject(s)
Artificial Intelligence , Ilium/diagnostic imaging , Ilium/pathology , Imaging, Three-Dimensional/methods , Radiographic Image Enhancement/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Algorithms , Humans , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...