Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Infect Immun ; 69(2): 865-8, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11159979

ABSTRACT

Brucella abortus is the etiological agent of brucellosis, a disease that affects bovines and human. We generated DNA random sequences from the genome of B. abortus strain 2308 in order to characterize molecular targets that might be useful for developing immunological or chemotherapeutic strategies against this pathogen. The partial sequencing of 1,899 clones allowed the identification of 1,199 genomic sequence surveys (GSSs) with high homology (BLAST expect value < 10(-5)) to sequences deposited in the GenBank databases. Among them, 925 represent putative novel genes for the Brucella genus. Out of 925 nonredundant GSSs, 470 were classified in 15 categories based on cellular function. Seven hundred GSSs showed no significant database matches and remain available for further studies in order to identify their function. A high number of GSSs with homology to Agrobacterium tumefaciens and Rhizobium meliloti proteins were observed, thus confirming their close phylogenetic relationship. Among them, several GSSs showed high similarity with genes related to nodule nitrogen fixation, synthesis of nod factors, nodulation protein symbiotic plasmid, and nodule bacteroid differentiation. We have also identified several B. abortus homologs of virulence and pathogenesis genes from other pathogens, including a homolog to both the Shda gene from Salmonella enterica serovar Typhimurium and the AidA-1 gene from Escherichia coli. Other GSSs displayed significant homologies to genes encoding components of the type III and type IV secretion machineries, suggesting that Brucella might also have an active type III secretion machinery.


Subject(s)
Brucella abortus/genetics , DNA, Bacterial/chemistry , Genome, Bacterial
2.
Genome Res ; 10(12): 1996-2005, 2000 Dec.
Article in English | MEDLINE | ID: mdl-11116094

ABSTRACT

A random sequence survey of the genome of Trypanosoma cruzi, the agent of Chagas disease, was performed and 11,459 genomic sequences were obtained, resulting in approximately 4.3 Mb of readable sequences or approximately 10% of the parasite haploid genome. The estimated total GC content was 50.9%, with a high representation of A and T di- and trinucleotide repeats. Out of the estimated 5000 parasite genes, 947 putative new genes were identified. Another 1723 sequences corresponded to genes detected previously in T. cruzi through expression sequence tag analysis. 7735 sequences had no matches in the database, but the presence of open reading frames that passed Fickett's test suggests that some might contain coding DNA. The survey was highly redundant, with approximately 35% of the sequences included in a few large sequence families. Some of them code for protein families present in dozens of copies, including proteins essential for parasite survival and retrotransposons. Other sequence families include repetitive DNA present in thousands of copies per haploid genome. Some families in the latter group are new, parasite-specific, repetitive DNAs. These results suggest that T. cruzi could constitute an interesting model to analyze gene and genome evolution due to its plasticity in terms of sequence amplification and divergence. Additional information can be found at http://www.iib.unsam.edu.ar/tcruzi.gss. html.


Subject(s)
DNA, Protozoan/analysis , Genes, Protozoan/genetics , Genome, Protozoan , Multigene Family/genetics , Repetitive Sequences, Nucleic Acid/genetics , Sequence Analysis, DNA/methods , Trypanosoma cruzi/genetics , Animals , Base Composition , Base Sequence , Interspersed Repetitive Sequences , Molecular Sequence Data , Sequence Alignment , Software
3.
Medicina (B Aires) ; 59 Suppl 2: 4-6, 1999.
Article in Spanish | MEDLINE | ID: mdl-10668236

ABSTRACT

Five years ago the Special Programme for Research and Training in Tropical Diseases (TDR) from the World Health Organization (WHO) launched the Parasite Genome Project. The aims were to obtain information on genome organization and gene discovery in five parasites, namely, Schistosoma, Filaria, Leishmania and Trypanosomas brucei and cruzi. Organization of research networks for each parasite under study, promotion of international collaboration and training of researchers in developing countries, were also main objectives of the programme. After five years, a large amount of information has been obtained, which is now available to researchers in the field.


Subject(s)
Computer Communication Networks , Databases as Topic/organization & administration , Genome, Protozoan , Trypanosoma cruzi/genetics , Animals , DNA, Protozoan/analysis , Genomic Library , Program Development
4.
Infect Immun ; 66(11): 5393-8, 1998 Nov.
Article in English | MEDLINE | ID: mdl-9784549

ABSTRACT

Analysis of expressed sequence tags (ESTs) constitutes a useful approach for gene identification that, in the case of human pathogens, might result in the identification of new targets for chemotherapy and vaccine development. As part of the Trypanosoma cruzi genome project, we have partially sequenced the 5' ends of 1, 949 clones to generate ESTs. The clones were randomly selected from a normalized CL Brener epimastigote cDNA library. A total of 14.6% of the clones were homologous to previously identified T. cruzi genes, while 18.4% had significant matches to genes from other organisms in the database. A total of 67% of the ESTs had no matches in the database, and thus, some of them might be T. cruzi-specific genes. Functional groups of those sequences with matches in the database were constructed according to their putative biological functions. The two largest categories were protein synthesis (23.3%) and cell surface molecules (10.8%). The information reported in this paper should be useful for researchers in the field to analyze genes and proteins of their own interest.


Subject(s)
Chromosome Mapping/methods , Expressed Sequence Tags , Genes, Protozoan , Sequence Analysis, DNA/methods , Trypanosoma cruzi/genetics , Animals , DNA, Complementary/genetics , Molecular Sequence Data , Multigene Family , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...