Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 270: 116062, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33243542

ABSTRACT

Commuters are exposed to a variety of physicochemical and microbiological pollutants that can lead to adverse health effects. This study aims to evaluate the indoor air quality (IAQ) in cars, buses and trains in Lisbon, to estimate inhaled doses while commuting and to evaluate the impacts of cleaning and ventilation on the IAQ. Particulate matter with diameter lower than 1, 2.5 and 10 µm (PM1, PM2.5 and PM10), black carbon (BC), carbon monoxide (CO), carbon dioxide (CO2) volatile organic compounds (VOCs), formaldehyde (CH2O) and total airborne bacteria and fungi were measured and bacterial isolates were identified. Results showed that the type of ventilation is the main factor affecting the IAQ in vehicle cabins. Under the fan off condition, the concentration of BC was lower, but the concentration of gases such as CO2, CO and VOC tended to accumulate rapidly. When the ventilation was used, the coarse particles were filtered originating the decrease of indoor concentrations. Commuters travelling in trains received the lowest dose for all chemical pollutants, except VOC, mainly because railways are further away from the direct vehicular emissions. Commuters travelling in cars without ventilation received the highest inhaled dose for almost all pollutants despite having the lowest travel duration. Airborne microbiota was highly affected by the occupancy of the vehicles and therefore, the fungi and bacterial loads were higher in trains and buses. Most of the isolated species were human associated bacteria and some of the most abundant species have been linked to respiratory tract infections.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Environmental Pollutants , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring , Humans , Particulate Matter/analysis , Transportation , Vehicle Emissions/analysis
2.
J Toxicol Environ Health A ; 76(4-5): 291-303, 2013.
Article in English | MEDLINE | ID: mdl-23514071

ABSTRACT

There is an ever-increasing global demand from consumers for high-quality foods with major emphasis placed on quality and safety attributes. One of the main demands that consumers display is for minimally processed, high-nutrition/low-energy natural foods with no or minimal chemical preservatives. The nutritional value of raspberry fruit is widely recognized. In particular, red raspberries are known to demonstrate a strong antioxidant capacity that might prove beneficial to human health by preventing free radical-induced oxidative stress. However, food products that are consumed raw, are increasingly being recognized as important vehicles for transmission of human pathogens. Food irradiation is one of the few technologies that address both food quality and safety by virtue of its ability to control spoilage and foodborne pathogenic microorganisms without significantly affecting sensory or other organoleptic attributes of the food. Food irradiation is well established as a physical, nonthermal treatment (cold pasteurization) that processes foods at or nearly at ambient temperature in the final packaging, reducing the possibility of cross contamination until the food is actually used by the consumer. The aim of this study was to evaluate effects of gamma radiation on raspberries in order to assess consequences of irradiation. Freshly packed raspberries (Rubus idaeus L.) were irradiated in a (60)Co source at several doses (0.5, 1, or 1.5 kGy). Bioburden, total phenolic content, antioxidant activity, physicochemical properties such as texture, color, pH, soluble solids content, and acidity, and sensorial parameters were assessed before and after irradiation and during storage time up to 14 d at 4°C. Characterization of raspberries microbiota showed an average bioburden value of 10(4) colony-forming units (CFU)/g and a diverse microbial population predominantly composed of two morphological types (gram-negative, oxidase-negative rods, 35%, and filamentous fungi, 41%). The inactivation studies on the raspberries mesophilic population indicated a one log reduction of microbial load (95% inactivation efficiency for 1.5 kGy), in the surviving population mainly constituted by filamentous fungi (79-98%). The total phenolic content of raspberries indicated an increase with radiation doses and a decrease with storage time. The same trend was found for raspberries' antioxidant capacity with storage time. Regarding raspberries physicochemical properties, irradiation induced a significant decrease in firmness compared with nonirradiated fruit. However, nonirradiated and irradiated fruit presented similar physicochemical and sensory properties during storage time. Further studies are needed to elucidate the benefits of irradiation as a raspberries treatment process.


Subject(s)
Food Irradiation , Food Preservation/methods , Fruit/radiation effects , Gamma Rays , Rosaceae/radiation effects , Antioxidants/analysis , Antioxidants/radiation effects , Colony Count, Microbial , Food Microbiology , Fruit/standards , Phenols/radiation effects
3.
J Environ Monit ; 13(3): 657-67, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21274462

ABSTRACT

The aim of this study was to evaluate the indoor (I) and outdoor (O) levels of NO2, speciated volatile organic compounds (VOCs) and carbonyls at fourteen primary schools in Lisbon (Portugal) during spring, autumn and winter. Three of these schools were also selected to be monitored for comfort parameters, such as temperature and relative humidity, carbon dioxide (CO2), carbon monoxide (CO), total VOCs, and both bacterial and fungal colony-forming units per cubic metre. The concentration of CO2 and bioaerosols greatly exceeded the acceptable maximum values of 1800 mg m⁻³ and 500 CFU m⁻³, respectively, in all seasons. Most of the assessed VOCs and carbonyls occurred at I/O ratios above unity in all seasons, thus showing the importance of indoor sources and building conditions in indoor air quality. However, it has been observed that higher indoor VOC concentrations occurred more often in the colder months, while carbonyl concentrations were higher in the warm months. In general, the I/O NO2 ratios ranged between 0.35 and 1, never exceeding the unity. Some actions are suggested to improve the indoor air quality in Lisbon primary schools.


Subject(s)
Air Microbiology , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Volatile Organic Compounds/analysis , Air/analysis , Animals , Humans , Nitrogen Dioxide/analysis , Portugal , Schools , Seasons , Tobacco Smoke Pollution/analysis , Vehicle Emissions/analysis , Ventilation
SELECTION OF CITATIONS
SEARCH DETAIL
...