Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 27(13): 2823-2833, 2018 07.
Article in English | MEDLINE | ID: mdl-29772088

ABSTRACT

Genome-environment association methods aim to detect genetic markers associated with environmental variables. The detected associations are usually analysed separately to identify the genomic regions involved in local adaptation. However, a recent study suggests that single-locus associations can be combined and used in a predictive way to estimate environmental variables for new individuals on the basis of their genotypes. Here, we introduce an original approach to predict the environmental range (values and upper and lower limits) of species genotypes from the genetic markers significantly associated with those environmental variables in an independent set of individuals. We illustrate this approach to predict aridity in a database constituted of 950 individuals of wild beets and 299 individuals of cultivated beets genotyped at 14,409 random single nucleotide polymorphisms (SNPs). We detected 66 alleles associated with aridity and used them to calculate the fraction (I) of aridity-associated alleles in each individual. The fraction I correctly predicted the values of aridity in an independent validation set of wild individuals and was then used to predict aridity in the 299 cultivated individuals. Wild individuals had higher median values and a wider range of values of aridity than the cultivated individuals, suggesting that wild individuals have higher ability to resist to stress-aridity conditions and could be used to improve the resistance of cultivated varieties to aridity.


Subject(s)
Adaptation, Physiological/genetics , Gene-Environment Interaction , Genetic Markers , Genetics, Population , Alleles , Genome/genetics , Genomics , Genotype , Metagenomics , Models, Genetic , Polymorphism, Single Nucleotide/genetics
2.
Theor Appl Genet ; 130(9): 1857-1866, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28589246

ABSTRACT

KEY MESSAGE: Using a much higher number of SNP markers and larger sample sizes than all the previous studies, we characterized the genetic relationships among wild and cultivated plants of section Beta. We analyzed the genetic variation of Beta section Beta, which includes wild taxa (Beta macrocarpa, B. patula, B. vulgaris subsp. adanensis and B. vulgaris subsp. maritima) and cultivars (fodder beet, sugar beet, garden beet, leaf beet, and swiss chards), using 9724 single nucleotide polymorphism markers. The analyses conducted at the individual level without a priori groups confirmed the strong differentiation of B. macrocarpa and B. vulgaris subsp. adanensis from the other taxa. B. vulgaris subsp. maritima showed a complex genetic structure partly following a geographical pattern, which confounded the differences between this taxon and the cultivated varieties. Cultivated varieties were structured into three main groups: garden beets, fodder and sugar beets, and leaf beets and swiss chards. The genetic structure described here will be helpful to correctly estimate linkage disequilibrium and to test for statistical associations between genetic markers and environmental variables.


Subject(s)
Beta vulgaris/classification , Genetics, Population , Polymorphism, Single Nucleotide , Beta vulgaris/genetics , Genetic Markers , Linkage Disequilibrium
3.
Database (Oxford) ; 2013: bat058, 2013.
Article in English | MEDLINE | ID: mdl-23959375

ABSTRACT

Data integration is a key challenge for modern bioinformatics. It aims to provide biologists with tools to explore relevant data produced by different studies. Large-scale international projects can generate lots of heterogeneous and unrelated data. The challenge is to integrate this information with other publicly available data. Nucleotide sequencing throughput has been improved with new technologies; this increases the need for powerful information systems able to store, manage and explore data. GnpIS is a multispecies integrative information system dedicated to plant and fungi pests. It bridges genetic and genomic data, allowing researchers access to both genetic information (e.g. genetic maps, quantitative trait loci, markers, single nucleotide polymorphisms, germplasms and genotypes) and genomic data (e.g. genomic sequences, physical maps, genome annotation and expression data) for species of agronomical interest. GnpIS is used by both large international projects and plant science departments at the French National Institute for Agricultural Research. Here, we illustrate its use. Database URL: http://urgi.versailles.inra.fr/gnpis.


Subject(s)
Databases, Genetic , Fungi/genetics , Genome, Fungal/genetics , Genome, Plant/genetics , Genomics , Plants/genetics , International Cooperation , Search Engine , Triticum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...