Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 329: 124895, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33713898

ABSTRACT

Microalgae have gained significant importance in biotechnology development, providing valuable goods and services in multiple applications. Although there is a rising market for most of these applications, the incorporation and introduction of microalgae into new venues will extend in the near future. These advances are due to the vast biodiversity of microalgal species, recent genetic engineering tools, and culture techniques. There are three main possible approaches for novel algal compounds from: (1) recently isolated yet less known microalgae; (2) selectively stressed conditions; and (3) enzymatically adjusted compounds from conventional molecules. All these approaches can be combined in a specific manner. This review discusses the opportunities, potential and limitations of introducing novel microalgae-based products, and how the recent technologies can be deployed to make these products financially viable. To give an outlook to the future, an analysis of the developments and predicted future market that further enlarge the promise of cultivating microalgae for commercial purposes are considered.


Subject(s)
Microalgae , Biodiversity , Biotechnology , Genetic Engineering
2.
Mar Drugs ; 19(2)2021 Feb 06.
Article in English | MEDLINE | ID: mdl-33562153

ABSTRACT

Historically, algae have stimulated significant economic interest particularly as a source of fertilizers, feeds, foods and pharmaceutical precursors. However, there is increasing interest in exploiting algal diversity for their antiviral potential. Here, we present an overview of 50-years of scientific and technological developments in the field of algae antivirals. After bibliometric analysis of 999 scientific references, a survey of 16 clinical trials and analysis of 84 patents, it was possible to identify the dominant algae, molecules and viruses that have been shaping and driving this promising field of research. A description of the most promising discoveries is presented according to molecule class. We observed a diverse range of algae and respective molecules displaying significant antiviral effects against an equally diverse range of viruses. Some natural algae molecules, like carrageenan, cyanovirin or griffithsin, are now considered prime reference molecules for their outstanding antiviral capacity. Crucially, while many algae antiviral applications have already reached successful commercialization, the large spectrum of algae antiviral capacities already identified suggests a strong potential for future expansion of this field.


Subject(s)
Antiviral Agents/pharmacology , Microalgae/metabolism , Seaweed/metabolism , Agriculture , Aquaculture , Bacterial Proteins/pharmacology , Clinical Trials as Topic , Diterpenes/pharmacology , Lectins/pharmacology , Membrane Proteins/pharmacology , Plant Lectins/pharmacology , Polysaccharides/pharmacology
3.
N Biotechnol ; 61: 99-107, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33249179

ABSTRACT

The bioeconomy is a new and essential paradigm for reducing our dependence on natural resources and responding to the environmental threats that the Earth is currently facing. In this regard, microalgae offer almost unlimited possibilities for developing a modern bioeconomy given their metabolic flexibility and high biomass output rates, even when produced under harsh conditions, such as when treating wastewaters or using flue gases. In this article, the microalgal contribution to important economic activities such as the production of food and feed, cosmetics and health-related compounds is reviewed. Moreover, potential contributions of microalgae to emerging sectors are discussed, as in the production of biomaterials, agriculture-related products, biofuels and provision of services such as wastewater treatment and the clean-up of industrial gases. The different microalgal production technologies have also been analyzed to identify the main bottlenecks affecting microalgal use in different applications. Finally, the major challenges facing microalgal biotechnology in enlarging its contribution to the bioeconomy are evaluated, and future trends discussed.


Subject(s)
Biotechnology/economics , Microalgae/metabolism , Agriculture/economics , Biofuels/economics , Biomass
4.
Appl Microbiol Biotechnol ; 100(16): 7061-70, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26969037

ABSTRACT

Microalgae have emerged as potentially powerful platforms for the production of recombinant proteins and high-value products. Chlamydomonas reinhardtii is a potentially important host species due to the range of genetic tools that have been developed for this unicellular green alga. Transformation of the chloroplast genome offers important advantages over nuclear transformation, and a wide range of recombinant proteins have now been expressed in the chloroplasts of C. reinhardtii strains. This is often done in cell wall-deficient mutants that are easier to transform. However, only a single study has reported growth data for C. reinhardtii grown at pilot scale, and the growth of cell wall-deficient strains has not been reported at all. Here, we report the first pilot-scale growth study for transgenic, cell wall-deficient C. reinhardtii strains. Strains expressing a cytochrome P450 (CYP79A1) or bifunctional diterpene synthase (cis-abienol synthase, TPS4) were grown for 7 days under mixotrophic conditions in a Tris-acetate-phosphate medium. The strains reached dry cell weights of 0.3 g/L within 3-4 days with stable expression levels of the recombinant proteins during the whole upscaling process. The strains proved to be generally robust, despite the cell wall-deficient phenotype, but grew poorly under phototrophic conditions. The data indicate that cell wall-deficient strains may be highly amenable for transformation and suitable for commercial-scale operations under mixotrophic growth regimes.


Subject(s)
Chlamydomonas reinhardtii/genetics , Chloroplasts/genetics , Cytochrome P-450 Enzyme System/genetics , Glucosyltransferases/genetics , Recombinant Proteins/genetics , Cell Wall/genetics , Cell Wall/metabolism , Chlamydomonas reinhardtii/growth & development , Cytochrome P-450 Enzyme System/metabolism , Gene Transfer Techniques , Glucosyltransferases/metabolism , Recombinant Proteins/biosynthesis , Transformation, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...