Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 382(2275): 20230183, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38910395

ABSTRACT

We examine the temporal evolution of sequences of induced seismicity caused by long-term fluid injection using a compilation of over 20 case studies where moderate magnitude (M > 3.0) induced events have been recorded. We compare rates of seismicity with injection rates via the seismogenic index and seismic efficiency parameters, computing both cumulative and time-windowed values. We find that cumulative values tend to accelerate steeply as each seismicity sequence initiates-most cases reach a value that is within 0.5 units of their maximum value within 1-3 years. Time-windowed values tend to increase to maximum values within 25%-35% of the overall sequence, before decreasing as levels of seismicity stabilize. We interpret these observations with respect to the pore pressure changes that will be generated in highly porous, high permeability reservoirs. In such situations, the rate of pore pressure change is highest during the early phases of injection and decreases with time. If induced seismicity scales with the rate of deformation, which in turn is controlled by the rate of pore pressure change, then it is to be expected that induced seismicity is highest during the early phases of injection, and then decreases with time. This article is part of the theme issue 'Induced seismicity in coupled subsurface systems'.

2.
Sci Rep ; 12(1): 14463, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36002601

ABSTRACT

Hydraulic fracturing (HF) is a reservoir stimulation technique that has been widely deployed in recent years to increase the productivity of light oil and/or natural gas from organic-rich, low-permeability formations. Although the process of fracturing a rock typically results in microseismic events of magnitude < 0, many cases of felt seismic events (typically magnitude 3.0 or larger) have also been reported. In the Western Canada Sedimentary Basin (WCSB), where more than 40,000 wells have been drilled and hydraulically fractured in the past two decades, the occurrence of HF-induced events has surged in some areas. Yet, many other areas of the WCSB have not experienced a significant increase in induced seismicity, despite a sharp increase in both the number of HF wells and the volumes of injected fluid. The relationship between injected volume and induced magnitudes can be quantified using the seismic efficiency ratio (SEFF), which describes the ratio between the net seismic moment release and the injected fluid volume. Runaway rupture, in which the fault rupture is dominated by the release of accumulated tectonic stresses, is inferred to be marked by an abrupt increase in SEFF to a value > 0.5. Most previous studies of induced earthquakes have been limited to a single operation and/or seismicity sequence. To better understand the observed variability of the seismic response to HF stimulations at a basin scale, we compiled HF data for all unconventional wells hydraulic fractured in the WCSB between 2000 and 2020, together with the seismicity reported during the same period. We grouped these observations into bins measuring 0.2° in longitude and 0.1° in latitude, or approximately 13 by 11 km. We identified 14 areas where large magnitude events resulted in high SEFF values, implying runaway rupture had taken place. However, we find that in these areas, sustained fluid injection did not lead to persistent high SEFF values. Instead, as injection continued, SEFF values returned to values less than 0.5. This suggests that there is a limited budget of tectonic strain energy available to generate runaway rupture events: once this is released, event magnitudes decrease even if high volume injection persists.

3.
Proc Natl Acad Sci U S A ; 110(30): E2762-71, 2013 Jul 23.
Article in English | MEDLINE | ID: mdl-23836635

ABSTRACT

Geological storage of CO2 that has been captured at large, point source emitters represents a key potential method for reduction of anthropogenic greenhouse gas emissions. However, this technology will only be viable if it can be guaranteed that injected CO2 will remain trapped in the subsurface for thousands of years or more. A significant issue for storage security is the geomechanical response of the reservoir. Concerns have been raised that geomechanical deformation induced by CO2 injection will create or reactivate fracture networks in the sealing caprocks, providing a pathway for CO2 leakage. In this paper, we examine three large-scale sites where CO2 is injected at rates of ~1 megatonne/y or more: Sleipner, Weyburn, and In Salah. We compare and contrast the observed geomechanical behavior of each site, with particular focus on the risks to storage security posed by geomechanical deformation. At Sleipner, the large, high-permeability storage aquifer has experienced little pore pressure increase over 15 y of injection, implying little possibility of geomechanical deformation. At Weyburn, 45 y of oil production has depleted pore pressures before increases associated with CO2 injection. The long history of the field has led to complicated, sometimes nonintuitive geomechanical deformation. At In Salah, injection into the water leg of a gas reservoir has increased pore pressures, leading to uplift and substantial microseismic activity. The differences in the geomechanical responses of these sites emphasize the need for systematic geomechanical appraisal before injection in any potential storage site.

SELECTION OF CITATIONS
SEARCH DETAIL
...