Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Am J Med Genet A ; 188(8): 2325-2330, 2022 08.
Article in English | MEDLINE | ID: mdl-35678493

ABSTRACT

Pediatric B-cell acute lymphoblastic leukemia (B-ALL) is associated with various specific cytogenetic and molecular markers that have significant influence on treatment and prognosis. A subset of children has a much higher risk of developing B-ALL due to constitutional genetic alterations such as trisomy 21 (Down's syndrome). In these patients, B-ALL is often associated with specific genomic profiles leading to leukemic transformation. In rare cases, constitutional structural chromosomal abnormalities involving chromosome 21, such as the der(15;21) Robertsonian translocation and a ring 21 chromosome, have been associated with intrachromosomal amplification of chromosome 21 (iAMP21) B-ALL. Here, we report the development of B-ALL in a child with Down's syndrome who carries a constitutional isodicentric chromosome 21 [idic(21)], described previously by Putra et al., 2017. This idic(21) appeared to be unstable during mitosis, leading to somatic rearrangements consistent with iAMP21 amplification, resulting in the development of leukemia. In this case, a single constitutional structural chromosome 21 rearrangement resulted in a B-ALL with Down syndrome-associated genomic lesions as well as genomic lesions not common to the Down syndrome subtype of B-ALL. Our findings highlight the need for counseling of individuals with constitutional structural chromosome 21 rearrangements regarding their risks of developing a B-ALL.


Subject(s)
Burkitt Lymphoma , Down Syndrome , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Ring Chromosomes , Burkitt Lymphoma/complications , Child , Chromosome Aberrations , Chromosomes, Human, Pair 21/genetics , Down Syndrome/complications , Down Syndrome/diagnosis , Down Syndrome/genetics , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Translocation, Genetic
2.
iScience ; 25(4): 104004, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35313694

ABSTRACT

Mutations in the gene encoding DNA methyltransferase 3A (DNMT3A) are the most common cause of clonal hematopoiesis and are among the most common initiating events of acute myeloid leukemia (AML). Studies in germline and somatic Dnmt3a knockout mice have identified focal, canonical hypomethylation phenotypes in hematopoietic cells; however, the kinetics of methylation loss following acquired DNMT3A inactivation in hematopoietic cells is essentially unknown. Therefore, we evaluated a somatic, inducible model of hematopoietic Dnmt3a loss, and show that inactivation of Dnmt3a in murine hematopoietic cells results in a relatively slow loss of methylation at canonical sites throughout the genome; in contrast, remethylation of Dnmt3a deficient genomes in hematopoietic cells occurs much more quickly. This data suggests that slow methylation loss may contribute, at least in part, to the long latent period that characterizes clonal expansion and leukemia development in individuals with acquired DNMT3A mutations in hematopoietic stem cells.

3.
Proc Natl Acad Sci U S A ; 117(6): 3123-3134, 2020 02 11.
Article in English | MEDLINE | ID: mdl-31996479

ABSTRACT

Mutations in the DNA methyltransferase 3A (DNMT3A) gene are the most common cause of age-related clonal hematopoiesis (ARCH) in older individuals, and are among the most common initiating events for acute myeloid leukemia (AML). The most frequent DNMT3A mutation in AML patients (R882H) encodes a dominant-negative protein that reduces methyltransferase activity by ∼80% in cells with heterozygous mutations, causing a focal, canonical DNA hypomethylation phenotype; this phenotype is partially recapitulated in murine Dnmt3a-/- bone marrow cells. To determine whether the hypomethylation phenotype of Dnmt3a-/- hematopoietic cells is reversible, we developed an inducible transgene to restore expression of DNMT3A in transplanted bone marrow cells from Dnmt3a-/- mice. Partial remethylation was detected within 1 wk, but near-complete remethylation required 6 mo. Remethylation was accurate, dynamic, and highly ordered, suggesting that differentially methylated regions have unique properties that may be relevant for their functions. Importantly, 22 wk of DNMT3A addback partially corrected dysregulated gene expression, and mitigated the expansion of myeloid cells. These data show that restoring DNMT3A expression can alter the epigenetic "state" created by loss of Dnmt3a activity; this genetic proof-of-concept experiment suggests that this approach could be relevant for patients with ARCH or AML caused by loss-of-function DNMT3A mutations.


Subject(s)
Bone Marrow Cells/metabolism , DNA (Cytosine-5-)-Methyltransferases , DNA Methylation/genetics , Gene Expression/genetics , Animals , Bone Marrow Transplantation , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A , Hematopoiesis/genetics , Humans , Mice , Mice, Transgenic , Mutation/genetics
4.
J Clin Invest ; 127(10): 3657-3674, 2017 Oct 02.
Article in English | MEDLINE | ID: mdl-28872462

ABSTRACT

The gene that encodes de novo DNA methyltransferase 3A (DNMT3A) is frequently mutated in acute myeloid leukemia genomes. Point mutations at position R882 have been shown to cause a dominant negative loss of DNMT3A methylation activity, but 15% of DNMT3A mutations are predicted to produce truncated proteins that could either have dominant negative activities or cause loss of function and haploinsufficiency. Here, we demonstrate that 3 of these mutants produce truncated, inactive proteins that do not dimerize with WT DNMT3A, strongly supporting the haploinsufficiency hypothesis. We therefore evaluated hematopoiesis in mice heterozygous for a constitutive null Dnmt3a mutation. With no other manipulations, Dnmt3a+/- mice developed myeloid skewing over time, and their hematopoietic stem/progenitor cells exhibited a long-term competitive transplantation advantage. Dnmt3a+/- mice also spontaneously developed transplantable myeloid malignancies after a long latent period, and 3 of 12 tumors tested had cooperating mutations in the Ras/MAPK pathway. The residual Dnmt3a allele was neither mutated nor downregulated in these tumors. The bone marrow cells of Dnmt3a+/- mice had a subtle but statistically significant DNA hypomethylation phenotype that was not associated with gene dysregulation. These data demonstrate that haploinsufficiency for Dnmt3a alters hematopoiesis and predisposes mice (and probably humans) to myeloid malignancies by a mechanism that is not yet clear.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/genetics , Genetic Predisposition to Disease , Haploinsufficiency , Hematopoietic Stem Cells , Leukemia, Myeloid, Acute , Point Mutation , Animals , Cell Line , DNA Methyltransferase 3A , Female , Hematopoietic Stem Cells/enzymology , Hematopoietic Stem Cells/pathology , Humans , Leukemia, Myeloid, Acute/enzymology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , MAP Kinase Signaling System/genetics , Male , Mice , Mice, Mutant Strains , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism
5.
J Clin Invest ; 126(1): 85-98, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26595813

ABSTRACT

The DNA methyltransferases DNMT3A and DNMT3B are primarily responsible for de novo methylation of specific cytosine residues in CpG dinucleotides during mammalian development. While loss-of-function mutations in DNMT3A are highly recurrent in acute myeloid leukemia (AML), DNMT3A mutations are almost never found in AML patients with translocations that create oncogenic fusion genes such as PML-RARA, RUNX1-RUNX1T1, and MLL-AF9. Here, we explored how DNMT3A is involved in the function of these fusion genes. We used retroviral vectors to express PML-RARA, RUNX1-RUNX1T1, or MLL-AF9 in bone marrow cells derived from WT or DNMT3A-deficient mice. Additionally, we examined the phenotypes of hematopoietic cells from Ctsg-PML-RARA mice, which express PML-RARA in early hematopoietic progenitors and myeloid precursors, with or without DNMT3A. We determined that the methyltransferase activity of DNMT3A, but not DNMT3B, is required for aberrant PML-RARA-driven self-renewal ex vivo and that DNMT3A is dispensable for RUNX1-RUNX1T1- and MLL-AF9-driven self-renewal. Furthermore, both the PML-RARA-driven competitive transplantation advantage and development of acute promyelocytic leukemia (APL) required DNMT3A. Together, these findings suggest that PML-RARA requires DNMT3A to initiate APL in mice.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/physiology , Leukemia, Promyelocytic, Acute/etiology , Oncogene Proteins, Fusion/physiology , Animals , Core Binding Factor Alpha 2 Subunit/physiology , DNA Methylation , DNA Methyltransferase 3A , Mice , Mice, Inbred C57BL
6.
Physiol Genomics ; 46(8): 277-89, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24550211

ABSTRACT

Increased angiogenesis, inflammation, and proliferation are hallmarks of diseased tissues, and in vivo models of these disease phenotypes can provide insight into disease pathology. Dstn(corn1) mice, deficient for the actin depolymerizing factor destrin (DSTN), display an increase of serum response factor (SRF) that results in epithelial hyperproliferation, inflammation, and neovascularization in the cornea. Previous work demonstrated that conditional ablation of Srf from the corneal epithelium of Dstn(corn1) mice returns the cornea to a wild-type (WT) like state. This result implicated SRF as a major regulator of genes that contributes to abnormal phenotypes in Dstn(corn1) cornea. The purpose of this study is to identify gene networks that are affected by increased expression of Srf in the Dstn(corn1) cornea. Microarray analysis led to characterization of gene expression changes that occur when conditional knockout of Srf rescues mutant phenotypes in the cornea of Dstn(corn1) mice. Comparison of gene expression values from WT, Dstn(corn1) mutant, and Dstn(corn1) rescued cornea identified >400 differentially expressed genes that are downstream from SRF. Srf ablation had a significant effect on genes associated with epithelial cell-cell junctions and regulation of actin dynamics. The majority of genes affected by SRF are downregulated in the Dstn(corn1) mutant cornea, suggesting that increased SRF negatively affects transcription of SRF gene targets. ChIP-seq analysis on Dstn(corn1) mutant and WT tissue revealed that, despite being present in higher abundance, SRF binding is significantly decreased in the Dstn(corn1) mutant cornea. This study uses a unique model combining genetic and genomic approaches to identify genes that are regulated by SRF. These findings expand current understanding of the role of SRF in both normal and abnormal tissue homeostasis.


Subject(s)
Cornea/metabolism , Destrin/genetics , Epithelial Cells/metabolism , Gene Expression/genetics , Gene Regulatory Networks/genetics , Serum Response Factor/genetics , Actins/genetics , Actins/metabolism , Animals , Destrin/metabolism , Down-Regulation/genetics , Intercellular Junctions/genetics , Intercellular Junctions/metabolism , Mice , Mutation/genetics , Phenotype , Serum Response Factor/metabolism , Transcription, Genetic/genetics
7.
Leukemia ; 27(7): 1548-1557, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23455394

ABSTRACT

Acute promyelocytic leukemia (APL) is initiated by the PML-RARA (PR) fusion oncogene and has a characteristic expression profile that includes high levels of the Notch ligand Jagged-1 (JAG1). In this study, we used a series of bioinformatic, in vitro, and in vivo assays to assess the role of Notch signaling in human APL samples, and in a PML-RARA knock-in mouse model of APL (Ctsg-PML-RARA). We identified a Notch expression signature in both human primary APL cells and in Kit+Lin-Sca1+ cells from pre-leukemic Ctsg-PML-RARA mice. Both genetic and pharmacologic inhibition of Notch signaling abrogated the enhanced self-renewal seen in hematopoietic stem/progenitor cells from pre-leukemic Ctsg-PML-RARA mice, but had no influence on cells from age-matched wild-type mice. In addition, six of nine murine APL tumors tested displayed diminished growth in vitro when Notch signaling was inhibited pharmacologically. Finally, we found that genetic inhibition of Notch signaling with a dominant-negative Mastermind-like protein reduced APL growth in vivo in a subset of tumors. These findings expand the role of Notch signaling in hematopoietic diseases, and further define the mechanistic events important for PML-RARA-mediated leukemogenesis.


Subject(s)
Leukemia, Promyelocytic, Acute/metabolism , Receptor, Notch1/metabolism , Signal Transduction/physiology , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Cathepsin G/genetics , Cell Line, Tumor , Disease Models, Animal , Female , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Jagged-1 Protein , Leukemia, Promyelocytic, Acute/genetics , Leukemia, Promyelocytic, Acute/pathology , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Oncogene Proteins, Fusion/genetics , Receptor, Notch1/genetics , Serrate-Jagged Proteins , Signal Transduction/genetics
8.
Mol Vis ; 18: 606-16, 2012.
Article in English | MEDLINE | ID: mdl-22419854

ABSTRACT

PURPOSE: Mutations in destrin (Dstn) cause corneal abnormalities in mice. A null mutation, Dstn(corn1), results in corneal epithelial hyperproliferation, inflammation, and neovascularization in the A.BY background (A.BY Dstn(corn1)). Homozygosity for a point mutation, Dstn(corn1-2J), results in mild thickening of the corneal epithelium but no corneal neovascularization in a C57BL/6 (B6) background (B6 Dstn(corn1-2J)). The goal of this study was to determine whether phenotypic differences are due to allelic differences between Dstn(corn1) and Dstn(corn1-2J), or are the result of genetic background effects. METHODS: We generated two congenic (Cg) mouse lines, B6.Cg-Dstn(corn1) and A.BY.Cg-Dstn(corn1-2J), to compare to the original A.BY Dstn(corn1) and B6 Dstn(corn1-2J) lines. We performed immunohistochemistry to assay F-actin accumulation, neovascularization, proliferation, and inflammation. By western blot analysis we tested the expression of serum response factor (SRF), a known regulator of the Dstn(corn1) phenotype. RESULTS: The Dstn(corn1) mutation leads to neovascularization, hyperproliferation, and inflammation in the cornea of A.BY Dstn(corn1) as well as B6.Cg-Dstn(corn1) mice. We did not observe significant corneal neovascularization or hyperproliferation in either A.BY.Cg-Dstn(corn1-2J) or B6 Dstn(corn1-2J) mice. Actin accumulation, neovascularization, epithelial proliferation and inflammation in B6.Cg-Dstn(corn1) cornea are significantly reduced when compared to A.BY Dstn(corn1)cornea. SRF changes are consistent in Dstn(corn1) mutants, regardless of genetic background. CONCLUSIONS: Differences in the abnormal phenotypes of Dstn mutants result from allelic differences between Dstn(corn1) and Dstn(corn1-2J) . Moreover, phenotypes of Dstn(corn1) mice are modified by genetic background, suggesting the existence of genetic modifiers. Protein analysis suggests that a genetic modifier affects phenotypic severity functionally downstream from or in a pathway independent from SRF. These data demonstrate that natural genetic variation affects phenotypic severity in Dstn(corn1) mice.


Subject(s)
Alleles , Cornea/metabolism , Corneal Neovascularization/genetics , Destrin/genetics , Mutation , Actins/genetics , Actins/metabolism , Animals , Cornea/blood supply , Cornea/pathology , Corneal Neovascularization/metabolism , Destrin/metabolism , Founder Effect , Gene Expression , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Mice , Mice, Transgenic , Phenotype , Protein Kinases/genetics , Protein Kinases/metabolism , Severity of Illness Index
9.
Genetics ; 186(1): 147-57, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20610412

ABSTRACT

Cell hyperproliferation, inflammation, and angiogenesis are biological processes central to the pathogenesis of corneal disease, as well as other conditions including tumorigenesis and chronic inflammatory disorders. Due to the number of disease conditions that arise as a result of these abnormalities, identifying the molecular mechanisms underlying these processes is critical. The avascular and transparent cornea serves as a good in vivo model to study the pathogenesis of cell hyperproliferation, inflammation, and angiogenesis. Corneal disease 1 (Dstn(corn1)) mice are homozygous for a spontaneous null allele of the destrin (Dstn) gene, which is also known as actin depolymerizing factor (ADF). These mice exhibit abnormalities in the cornea including epithelial cell hyperproliferation, stromal inflammation, and neovascularization. We previously identified that the transcription factor, serum response factor (SRF) and a number of its target genes are upregulated in the cornea of these mice. In this study, we show that conditional ablation of Srf in the corneal epithelium of a diseased Dstn(corn1) cornea results in the rescue of the epithelial cell hyperproliferation, inflammation, and neovascularization phenotypes, delineating an epithelial cell-specific role for SRF in the development of all of these abnormalities. Our study also demonstrates that Dstn is genetically upstream of Srf and defines a new functional role for SRF as the master regulator of a hyperproliferative, inflammatory phenotype accompanied by neovascularization.


Subject(s)
Actins/metabolism , Cytoskeleton/metabolism , Epithelium, Corneal/metabolism , Epithelium, Corneal/pathology , Serum Response Factor/metabolism , Animals , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Proliferation/drug effects , Cytoskeleton/drug effects , Destrin/genetics , Destrin/metabolism , Doxycycline/pharmacology , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelium, Corneal/cytology , Epithelium, Corneal/drug effects , Gene Expression Regulation/drug effects , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Mice , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Phenotype , Serum Response Factor/deficiency , Serum Response Factor/genetics
10.
Mamm Genome ; 21(1-2): 64-76, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20047077

ABSTRACT

Mammalian epidermis is a stratified epithelium that serves as a barrier protecting the organism from mechanical stress and dehydration. Previous studies have demonstrated the importance of the actin cytoskeleton in the establishment of a functional skin epithelium. Despite what is known about the actin cytoskeleton in epithelial sheet formation, the molecules important for controlling the actin cytoskeleton during epidermal development have not been determined. Serum response factor (SRF) is a transcription factor that is considered to be an important regulator of the actin cytoskeleton. To examine the role of SRF in the developing mouse epidermis, we have employed gene targeting to ablate Srf in keratinocytes. Conditional inactivation of Srf during the embryonic timepoint leads to a defect in the organization of the epidermis. Immunohistochemical analyses demonstrated a marked loss of the filamentous actin cytoskeleton and E-cadherin localization in epidermis, as well as an aberration in the localization of tight junction proteins. Moreover, impairment of the "inside-out" epidermal barrier was shown. Srf conditional knockout keratinocytes are unable to establish proper intercellular connections or form an epithelial sheet as shown by histological examination and induced keratinocyte differentiation experiments. Our results demonstrate that Srf is essential for the actin-mediated sealing of epithelial cell-cell contacts and the development of functional stratified skin epithelium in vivo.


Subject(s)
Epithelium/growth & development , Serum Response Factor/physiology , Skin/growth & development , Actins/metabolism , Animals , Cadherins/metabolism , Epithelium/metabolism , Eyelids/growth & development , Eyelids/physiology , Keratinocytes/metabolism , Mice , Mice, Knockout , Permeability , Skin/metabolism , Skin Physiological Phenomena , Tolonium Chloride
11.
PLoS One ; 3(7): e2701, 2008 Jul 16.
Article in English | MEDLINE | ID: mdl-18628996

ABSTRACT

BACKGROUND: Destrin (DSTN) is a member of the ADF/cofilin family of proteins and is an important regulator of actin dynamics. The primary function of destrin is to depolymerize filamentous actin into its monomeric form and promote filament severing. While progress has been made in understanding the biochemical functions of the ADF/cofilin proteins, the study of an animal model for cells deficient for DSTN provides an opportunity to investigate the physiological processes regulated by proper actin dynamics in vivo. A spontaneous mouse mutant, corneal disease 1(corn1), is deficient for DSTN, which causes epithelial hyperproliferation and neovascularization in the cornea. Dstn(corn1) mice exhibit an actin dynamics defect in the cornea as evidenced by the formation of actin stress fibers in the epithelial cells. Previously, we observed a significant infiltration of leukocytes into the cornea of Dstn(corn1) mice as well as the upregulation of proinflammatory molecules. In this study, we sought to characterize this inflammatory condition and explore the physiological mechanism through which a loss of Dstn function leads to inflammation. METHODOLOGY/PRINCIPAL FINDINGS: Through immunofluorescent analyses, we observed a significant recruitment of neutrophils and macrophages to the Dstn(corn1) cornea, demonstrating that the innate immune system is spontaneously activated in this mutant. The inflammatory chemokine, CXCL5, was ectopically expressed in the corneal epithelial cells of Dstn(corn1) mice, and targeting of the receptor for this chemokine inhibited neutrophil recruitment. An inflammatory reaction was not observed in the cornea of allelic mutant strain, Dstn(corn1-2J), which has a milder defect in actin dynamics in the corneal epithelial cells. CONCLUSIONS/SIGNIFICANCE: This study shows that severe defects in actin dynamics lead to an autoinflammatory condition that is mediated by the expression of CXC chemokines.


Subject(s)
Actins/chemistry , Chemokine CXCL5/biosynthesis , Gene Expression Regulation , Animals , Destrin/metabolism , Genotype , Humans , Inflammation , Leukocytes/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Biological , Neutrophils/metabolism , Phenotype
12.
Physiol Genomics ; 34(1): 9-21, 2008 Jun 12.
Article in English | MEDLINE | ID: mdl-18381839

ABSTRACT

Remodeling of the actin cytoskeleton through actin dynamics (assembly and disassembly of filamentous actin) is known to be essential for numerous basic biological processes. In addition, recent studies have provided evidence that actin dynamics participate in the control of gene expression. A spontaneous mouse mutant, corneal disease 1 (corn1), is deficient for a regulator of actin dynamics, destrin (DSTN, also known as ADF), which causes epithelial hyperproliferation and neovascularization in the cornea. Dstn(corn1) mice exhibit an actin dynamics defect in the corneal epithelial cells, offering an in vivo model to investigate cellular mechanisms affected by the Dstn mutation and resultant actin dynamics abnormalities. To examine the effect of the Dstn(corn1) mutation on the gene expression profile, we performed a microarray analysis using the cornea from Dstn(corn1) and wild-type mice. A dramatic alteration of the gene expression profile was observed in the Dstn(corn1) cornea, with 1,226 annotated genes differentially expressed. Functional annotation of these genes revealed that the most significantly enriched functional categories are associated with actin and/or cytoskeleton. Among genes that belong to these categories, a considerable number of serum response factor target genes were found, indicating the possible existence of an actin-SRF pathway of transcriptional regulation in vivo. A comparative study using an allelic mutant strain with milder corneal phenotypes suggested that the level of filamentous actin may correlate with the level of gene expression changes. Our study shows that Dstn mutations and resultant actin dynamics abnormalities have a strong impact on the gene expression profile in vivo.


Subject(s)
Destrin/genetics , Gene Expression Profiling , Mutation/genetics , Actins/metabolism , Animals , Cluster Analysis , Cornea/cytology , Cornea/metabolism , Cytoskeleton/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Gene Expression Regulation , Immunohistochemistry , Membrane Transport Proteins/metabolism , Mice , Mice, Inbred C57BL , Myelin Proteins/metabolism , Myelin and Lymphocyte-Associated Proteolipid Proteins , Proteolipids/metabolism , Serum Response Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...