Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Prev Vet Med ; 193: 105392, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34082250

ABSTRACT

Longevity is an important trait both from an economic and social perspective. Modern dairy cows are criticized for their short productive lifespan: only a minority of animals survives to a fourth lactation, implying that most cows are culled before reaching their maximal potential. In contrast, the population of 100 t cows (HT), reaching the threshold of 100,000 kg lifetime milk yield, is growing rapidly. As these cows combine a long lifespan with high functionality, a better understanding of their intrinsic characteristics might help us to improve the overall lifespan and lifetime production in dairy cows. The aim of the present research was to compare HT with their less-producing herd mates in order to identify intrinsic cow factors associated with longevity and high lifetime production. Therefore, we matched 26,248 HT with 691,597 herd mates, born in the same year in the same herd. Data were provided by Coöperatie rundveeverbetering (CRV) and contained birth dates, calving dates, milk yield and dam information. In addition, scores for conformation traits based on classifications in the first lactation and breeding values (for milk yield, fertility, udder health and claw health) were provided. Multivariable conditional logistic regression models were built to identify factors associated with reaching a lifetime milk yield of 100,000 kg. Results revealed cows born in September and born out of heifers to have the highest odds to become a HT. When cows received a score ≥ 83 (population average 80) for udder and feet & legs conformation, they had higher odds of reaching the 100,000 kg threshold. While a greater body condition and larger rump angle increased the odds of becoming a HT, this was decreased in cows with a large body depth. Finally, breeding values for milk yield, fertility, udder health and claw health were positively associated with the likelihood of reaching a lifetime milk yield of 100,000 kg. In conclusion, to increase lifetime milk yield in dairy herds, farmers should select heifers with high scores for conformation traits like udder and feet & legs and high breeding values for milk yield, fertility and udder health. Furthermore, our data suggest that being born in September out of a heifer potentially contributes to reaching a high lifetime milk yield.


Subject(s)
Dairying , Lactation , Longevity , Milk , Animals , Breeding , Cattle , Cattle Diseases , Female , Fertility , Mammary Glands, Animal
2.
J Dairy Sci ; 103(12): 11515-11523, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33069403

ABSTRACT

Milk yield during first lactation is an important economical trait. Age at first calving (AFC) is considered an important predictor of subsequent milk yield. In addition, both season of birth, as well as season of calving, have been shown to influence milk production, with conflicting results. Finally, higher parity of the dam has been associated with a lower performance of the offspring. The aim of the present study was to assess the effect of the above-mentioned factors based on a large-scale study and to rank the most important determinants for first-lactation milk yield. Data on 3,810,678 Holstein Friesian heifers, born in Belgium and the Netherlands between 2000 and 2015, were provided by Cooperative CRV and CRV BV (Arnhem, the Netherlands) and consisted of birth dates, calving dates, and first-lactation productions. In addition, herd, sire, and dam information was provided. Linear regression models were built with herd-calving year and sire as random effects and 305-d energy-corrected milk (ECM) yield during first lactation as outcome variable. Birth month, calving month, parity of the dam, and AFC were included as fixed effects in the model and a dominance analysis was performed to rank the associated factors according to importance. Results revealed AFC to be the most important factor (R2 = 0.047), with an increase in ECM up to an age of 33 mo. Calving month was a more important predictor than birth month (R2 = 0.010 vs. R2 = 0.002, respectively), with the highest first-lactation production in heifers calving in October to December, and the lowest in heifers calving in June and July. Birth month had a limited effect on first-lactation milk yield (R2 = 0.002), potentially masked by rearing strategies during early life. Finally, parity of the dam ≥3 was associated with a reduced ECM of the offspring (R2 = 0.002). In conclusion, our results show AFC to be an important determinant of milk yield during first lactation. In addition, seasonal patterns in milk production are seen, which should be further explored to identify the underlying mechanism.


Subject(s)
Aging , Cattle/physiology , Lactation , Milk , Parity , Animals , Belgium , Dairying , Female , Linear Models , Netherlands , Phenotype , Pregnancy , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...