Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Mycol Med ; 31(2): 101133, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33774386

ABSTRACT

A total of 70 feathers samples of Emu (Dromaius novaehollandiae) were collected from 7 Emu farms situated at two districts (Raigad and Thane) of Maharashtra (India) and screened for resident keratinophilic fungi. Among them, 44 isolates were recovered and identified by evaluating characteristic macro- and micro-morphological features. Further gene products corresponding to the ITS1-5.8S-ITS2 rDNA region from all isolates were amplified and sequenced. Homology search was performed using BLAST program against non-redundant nucleotide database, and significantly matched DNA sequences deposited to the NCBI Gene Bank for reference purposes. Eight identified fungal species belongs to 7 different genera named as Aphanoascus terreus Ac_MW577456 (21.43%), Microsporum gypseum Ac_MW580920 (14.29%), Ctenomyces serratus Ac_MW577459 (10.0%), Uncinocarpus orissi Ac_MW577461 (5.17%), Aphanoascus verrucosus Ac_MW577458 (4.29%), Gymnascella dankaliensis Ac_MW577460 (2.86%), Gymnoascoideus petalosporus Ac_MW577462 (2.86%) and Arthroderma tuberculatum Ac_MW577457 (1.43%).


Subject(s)
Dromaiidae/microbiology , Feathers/microbiology , Fungi/classification , Fungi/genetics , Keratins/metabolism , Animals , DNA, Ribosomal/genetics , Dromaiidae/anatomy & histology , Farms , Fungi/isolation & purification , India , Soil Microbiology
2.
Mycopathologia ; 182(3-4): 371-377, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27798742

ABSTRACT

Seventy-eight soil samples were collected from the various locations in the vicinity of Kaziranga National Park (Assam), India, during April to October 2009 and screened for the presence of keratinophilic fungi using the hair baiting techniques for isolation. Thirty-nine isolates were recovered and identified by recognition of their macro- and micromorphological features. Their identification was also confirmed by the BLAST search of sequences of the ITS1-5.8S-ITS2 rDNA region against the NCBI/GenBank data and compared with deposited sequences for identification purpose. Eleven species related to seven genera were recorded viz. Aphanoascus durus (1.28%), Arthroderma tuberculatum (3.84%), Arthroderma corniculatum (1.28%), Chrysosporium indicum (16.66%), C. tropicum (3.84%), Ctenomyces serratus (5.12%), Keratinophyton punsolae (1.28%), Microsporum appendiculatum (1.28%), Microsporum gypseum complex (11.53%), Trichophyton mentagrophytes (11.28%) and T. terrestre (2.56%).


Subject(s)
Fungi/isolation & purification , Fungi/metabolism , Keratins/metabolism , Soil Microbiology , Cluster Analysis , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Fungi/classification , Fungi/genetics , Hair/microbiology , Incidence , India , Microbiological Techniques , Microscopy , Parks, Recreational , Phylogeny , RNA, Ribosomal, 5.8S , Sequence Analysis, DNA
3.
Bioorg Med Chem ; 23(13): 3712-21, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25937235

ABSTRACT

A screening program aimed at discovering novel anticancer agents based on natural products led to the selection of koningic acid (KA), known as a potent inhibitor of glycolysis. A method was set up to produce this fungal sesquiterpene lactone in large quantities by fermentation, thus allowing (i) an extensive analysis of its anticancer potential in vitro and in vivo and (ii) the semi-synthesis of analogues to delineate structure-activity relationships. KA was characterized as a potent, but non-selective cytotoxic agent, active under both normoxic and hypoxic conditions and inactive in the A549 lung cancer xenograft model. According to our SAR, the acidic group could be replaced to keep bioactivity but an intact epoxide is essential.


Subject(s)
Antineoplastic Agents/chemical synthesis , Lung Neoplasms/drug therapy , Animals , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Hypoxia , Cell Line, Tumor , Fermentation , Glycolysis/drug effects , Humans , Inhibitory Concentration 50 , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, Nude , Sesquiterpenes/chemical synthesis , Sesquiterpenes/isolation & purification , Sesquiterpenes/pharmacokinetics , Sesquiterpenes/pharmacology , Structure-Activity Relationship , Trichoderma/chemistry , Trichoderma/metabolism , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
4.
J Antibiot (Tokyo) ; 67(10): 697-701, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24824817

ABSTRACT

A novel depsipeptide (PM181110) was purified from an endophytic fungus Phomopsis glabrae isolated from the leaves of Pongamia pinnata (family Fabaceae). The chemical structure of PM181110 was elucidated using physiochemical properties, 2D NMR and other spectroscopic methods. PM181110 is very close in structure to FE399. The compound exhibited in vitro anticancer activity against 40 human cancer cell lines with a mean IC50 value of 0.089 µM and ex vivo efficacy towards 24 human tumor xenografts (mean IC50=0.245 µM).


Subject(s)
Antineoplastic Agents/pharmacology , Ascomycota/chemistry , Biological Products/pharmacology , Depsipeptides/pharmacology , Endophytes/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Ascomycota/isolation & purification , Biological Products/chemistry , Biological Products/isolation & purification , Cell Line, Tumor , Chemical Phenomena , Depsipeptides/chemistry , Depsipeptides/isolation & purification , Endophytes/isolation & purification , Humans , Inhibitory Concentration 50 , Millettia/microbiology , Molecular Structure , Plant Leaves/microbiology , Spectrum Analysis
5.
Indian J Exp Biol ; 50(7): 464-8, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22822525

ABSTRACT

Biodiversity provides critical support for drug discovery. A significant proportion of drugs are derived, directly or indirectly, from biological sources. Through high throughput screening (HTS) and bioassay-guided isolation, bioactive compound sclerotiorin has been isolated from an endophytic fungus Cephalotheca faveolata. Sclerotiorin was found to be potent anti-proliferative against different cancer cells. In this study sclerotiorin has been found to induce apoptosis in colon cancer (HCT-116) cells through the activation of BAX, and down-regulation of BCL-2, those further activated cleaved caspase-3 causing apoptosis of cancer cells.


Subject(s)
Antineoplastic Agents/pharmacology , Ascomycota/chemistry , Benzopyrans/pharmacology , Antineoplastic Agents/isolation & purification , Apoptosis/drug effects , Benzopyrans/isolation & purification , Cell Line, Tumor , Cell Proliferation , Chromatography, Liquid , Drug Screening Assays, Antitumor , Humans , Magnetic Resonance Spectroscopy , Mass Spectrometry , Spectrophotometry, Ultraviolet
6.
Front Biosci (Elite Ed) ; 4(6): 2045-70, 2012 01 01.
Article in English | MEDLINE | ID: mdl-22202019

ABSTRACT

The prevalence of invasive fungal infections has increased significantly during organ transplantation, cancer chemotherapy and allogeneic bone marrow transplantation. However, only a limited number of antifungal agents are currently available for the treatment of life-threatening fungal infections. Although new antifungal agents have been introduced in the market, the development of resistance to antifungal drugs has become increasingly apparent, especially in patients with long term treatment. Microbial natural products have always been an alternative natural source for the isolation of novel molecules for various therapeutic applications. Endophytes are the microorganisms that colonize internal tissues of all plant species and represent an abundant and dependable source of bioactive and chemically novel compounds with potential for exploitation in a wide variety of medical, agricultural and industrial arenas. In the present review several metabolites obtained from endophytic fungi with a potential as antifungal agents are mentioned with bioactivity including volatile organic compounds. The compounds reported here with a diverse scaffold can be a potential starting point for new antifungal agents either as such or after chemical modification.


Subject(s)
Antifungal Agents/isolation & purification , Fungi/metabolism , Antifungal Agents/metabolism , Fungi/classification , Species Specificity , Volatile Organic Compounds/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...