Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(22): 226702, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38877951

ABSTRACT

Antiferromagnets are normally thought of as materials with compensated magnetic sublattices. This adds to their technological advantages but complicates readout of the antiferromagnetic state. We demonstrate theoretically the existence of a Dzyaloshinskii-Moriya interaction (DMI), which is determined by the magnetic symmetry classes of Cr_{2}O_{3} surfaces with an in-plane magnetic easy axis. The DMI explains a previously predicted out-of-plane magnetization at the nominally compensated surfaces of chromia, leading to a surface-localized canted ferrimagnetism. This is in agreement with magnetotransport measurements and with density functional theory predictions that further allow us to quantify the strength of DMI. The temperature dependence of the transversal resistance for these planes shows distinct behavior in comparison with that of the Cr_{2}O_{3} c plane, which we attribute to the influence of DMI. Our Letter provides a framework to analyze surface-driven phenomena in antiferromagnets, and motivates the use of nominally compensated chromia surfaces for antiferromagnetic spintronics and magnonics.

2.
Inorg Chem ; 62(23): 9054-9062, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37227413

ABSTRACT

Na2Ga7 crystallizes with the orthorhombic space group Pnma (no. 62; a = 14.8580(6) Å, b = 8.6766(6) Å, and c = 11.6105(5) Å; Z = 8) and constitutes a filled variant of the Li2B12Si2 structure type. The crystal structure consists of a network of icosahedral Ga12 units with 12 exohedral bonds and four-bonded Ga atoms in which the Na atoms occupy the channels and cavities. The atomic arrangement is consistent with the Zintl [(4b)Ga]- and Wade [(12b)Ga12]2- electron counting approach. The compound forms peritectically from Na7Ga13 and the melt at 501 °C and does not show a homogeneity range. The band structure calculations predict semiconducting behavior consistent with the electron balance [Na+]4[(Ga12)2-][Ga-]2. Magnetic susceptibility measurements show that Na2Ga7 is diamagnetic.

3.
Nat Commun ; 13(1): 6745, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36347852

ABSTRACT

Antiferromagnetic insulators are a prospective materials platform for magnonics, spin superfluidity, THz spintronics, and non-volatile data storage. A magnetomechanical coupling in antiferromagnets offers vast advantages in the control and manipulation of the primary order parameter yet remains largely unexplored. Here, we discover a new member in the family of flexoeffects in thin films of Cr2O3. We demonstrate that a gradient of mechanical strain can impact the magnetic phase transition resulting in the distribution of the Néel temperature along the thickness of a 50-nm-thick film. The inhomogeneous reduction of the antiferromagnetic order parameter induces a flexomagnetic coefficient of about 15 µB nm-2. The antiferromagnetic ordering in the inhomogeneously strained films can persist up to 100 °C, rendering Cr2O3 relevant for industrial electronics applications. Strain gradient in Cr2O3 thin films enables fundamental research on magnetomechanics and thermodynamics of antiferromagnetic solitons, spin waves and artificial spin ice systems in magnetic materials with continuously graded parameters.

4.
Small ; 18(17): e2201228, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35344270

ABSTRACT

Thin films of the magnetoelectric insulator α-Cr2 O3 are technologically relevant for energy-efficient magnetic memory devices controlled by electric fields. In contrast to single crystals, the quality of thin Cr2 O3 films is usually compromised by the presence of point defects and their agglomerations at grain boundaries, putting into question their application potential. Here, the impact of the defect nanostructure, including sparse small-volume defects and their complexes is studied on the magnetic properties of Cr2 O3 thin films. By tuning the deposition temperature, the type, size, and relative concentration of defects is tailored, which is analyzed using the positron annihilation spectroscopy complemented with electron microscopy studies. The structural characterization is correlated with magnetotransport measurements and nitrogen-vacancy microscopy of antiferromagnetic domain patterns. Defects pin antiferromagnetic domain walls and stabilize complex multidomain states with a domain size in the sub-micrometer range. Despite their influence on the domain configuration, neither small open-volume defects nor grain boundaries in Cr2 O3 thin films affect the Néel temperature in a broad range of deposition parameters. The results pave the way toward the realization of spin-orbitronic devices where magnetic domain patterns can be tailored based on defect nanostructures without affecting their operation temperature.

5.
ACS Mater Au ; 2(1): 45-54, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-36855699

ABSTRACT

The compound IrGa3 was synthesized by direct reaction of the elements. It is formed as a high-temperature phase in the Ir-Ga system. Single-crystal X-ray diffraction analysis confirms the tetragonal symmetry (space group P42 /mnm, No. 136) with a = 6.4623(1) Å and c = 6.5688(2) Å and reveals strong disorder in the crystal structure, reflected in the huge values and anisotropy of the atomic displacement parameters. A model for the real crystal structure of ht-IrGa3 is derived by the split-position approach from the single-crystal X-ray diffraction data and confirmed by an atomic-resolution transmission electron microscopy study. Temperature-dependent electrical resistivity measurements evidence semiconductor behavior with a band gap of 30 meV. A thermoelectric characterization was performed for ht-IrGa3 and for the solid solution IrGa3-x Zn x .

6.
ACS Appl Mater Interfaces ; 13(20): 23616-23626, 2021 May 26.
Article in English | MEDLINE | ID: mdl-33978421

ABSTRACT

Molybdenum-nickel materials are catalysts of industrial interest for the hydrogen evolution reaction (HER). Well-characterized surfaces of the single-phase intermetallic compounds Ni7Mo7, Ni3Mo, and Ni4Mo were subjected to accelerated durability tests (ADTs) and thorough characterization to unravel whether crystallographic ordering affects the activity. Their intrinsic instability leads to molybdenum leaching, resulting in higher specific surface areas and nickel-enriched surfaces. These are more prone to form Ni(OH)2 layers, which leads to deactivation of the Mo-Ni materials. The crystal structure of the intermetallic compounds has, due to the intrinsic instability of the materials in alkaline media, no effect on the activity. Ni7Mo7, identified earlier as durable, proves to be highly unstable in the applied ADTs. The results show that the enhanced activity of unsupported bulk Mo-Ni electrodes can solely be ascribed to increased specific surface areas.

7.
Nanomaterials (Basel) ; 11(1)2021 Jan 10.
Article in English | MEDLINE | ID: mdl-33435228

ABSTRACT

Nano-scaled thermoelectric materials attract significant interest due to their improved physical properties as compared to bulk materials. Well-shaped nanoparticles such as nano-bars and nano-cubes were observed in the known thermoelectric material PbTe. Their extended two-dimensional nano-layer arrangements form directly in situ through electron-beam treatment in the transmission electron microscope. The experiments show the atomistic depletion mechanism of the initial crystal and the recrystallization of PbTe nanoparticles out of the microparticles due to the local atomic-scale transport via the gas phase beyond a threshold current density of the beam.

8.
Dalton Trans ; 49(44): 15903-15913, 2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33165461

ABSTRACT

Poly- and single-crystalline samples of In0.67□0.33In2S4 thiospinel were obtained by various powder metallurgical and chemical vapor transport methods, respectively. All synthesized samples contained ß-In0.67□0.33In2S4 modification only, independent of the synthesis procedure. High-resolution powder X-ray diffraction (PXRD) experiments at 80 K enabled the observation of split tetragonal reflections (completely overlapped at room temperature), which prove the correctness of the crystal structure model accepted for the ß-polymorph. Combining single-crystal XRD, transmission electron microscopy and selected-area electron diffraction studies, the presence of three twin domains in the as-grown crystals was confirmed. A high temperature PXRD study revealed both abrupt (in full widths at half maxima of main reflections and in unit-cell volume) and gradual (in intensity of satellites and c/a ratio) changes in the vicinity of the α-ß phase transition. These observations, together with a clear endothermic peak in the heat capacity, the magnitude of enthalpy/entropy change and the temperature dependence of electrical resistivity (associated with hysteresis), hinted towards the 1st order type of transition. Three scenarios, based on Rietveld refinement analysis, were considered for the description of the crystal structure evolution from ß- to α-modification, including the (3+3)D-modulated cubic structure at 693 K as an intermediate state during the ß-α transformation. The Seebeck coefficient, electrical resistivity and thermal conductivity were not only influenced by phase transition, but also by annealing conditions (S-poor or S-rich atmosphere). Density functional theory calculations predicted semiconducting behavior of In0.67□0.33In2S4, as well as instability of the fictitious InIn2S4 thiospinel.

9.
Angew Chem Int Ed Engl ; 59(38): 16770-16776, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32441451

ABSTRACT

The production of hydrogen via water electrolysis is feasible only if effective and stable catalysts for the oxygen evolution reaction (OER) are available. Intermetallic compounds with well-defined crystal and electronic structures as well as particular chemical bonding features are suggested here to act as precursors for new composite materials with attractive catalytic properties. Al2 Pt combines a characteristic inorganic crystal structure (anti-fluorite type) and a strongly polar chemical bonding with the advantage of elemental platinum in terms of stability against dissolution under OER conditions. We describe here the unforeseen performance of a surface nanocomposite architecture resulting from the self-organized transformation of the bulk intermetallic precursor Al2 Pt in OER.

10.
Chemistry ; 26(23): 5245-5256, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-31943404

ABSTRACT

The homogeneity range of ternary iron indium thiospinel at 873 K was investigated. A detailed study was focused on two distinct series (y=z): 1) a previously reported charge-balanced (In0.67+0.33y □0.33-0.33y )tetr [In2-z Fez ]oct S4 (A1-series; □ stands for vacancy; the abbreviations "tetr" and "oct" indicate atoms occupying tetrahedral 8a and octahedral 16d sites, respectively) and 2) a new charge-unbalanced (In0.67+y □0.33-y )tetr [In2-z Fez ]oct S4 (A2-series). Fe atoms were confirmed to exclusively occupy an octahedral position in both series. An unusual reduction of the unit cell parameter with increasing Fe content is explained by differences in the ionic radii between Fe and In, as well as by an additional electrostatic attraction originating from charge imbalance (latter only in A2-series). The studied compound is an n-type semiconductor, and its charge carrier concentration increases or decreases for larger Fe content within the A1- and A2-series, respectively. The thermal conductivity κtot is significantly reduced upon increasing vacancy concentration, whereas the change of power factor is insufficient to drastically improve the thermoelectric figure of merit.

11.
Dalton Trans ; 48(23): 8350-8360, 2019 Jun 21.
Article in English | MEDLINE | ID: mdl-31112177

ABSTRACT

A detailed study of polycrystalline indium-based In1-x□xIn2S4 (x = 0.16, 0.22, 0.28, and 0.33) thiospinel is presented (□- vacancy). Comprehensive investigation of synthesis conditions, phase composition and thermoelectric properties was performed by means of various diffraction, microscopic and spectroscopic methods. Single-phase α- and ß-In1-x□xIn2S4 were found in samples with 0.16 ≤x≤ 0.22 and x = 0.33 (In2S3), respectively. In contrast, it is shown that In0.72□0.28In2S4 contains both α- and ß-polymorphic modifications. Consequently, the thermoelectric characterization of well-defined α- and ß-In1-x□xIn2S4 is conducted for the first time. α-In1-x□xIn2S4 (x = 0.16 and 0.22) revealed n-type semiconducting behavior, a large Seebeck coefficient (>|200|µV K-1) and moderate charge carrier mobility on the level of ∼20 cm2 V-1 s-1 at room temperature (RT). Decreases in charge carrier concentration (increase of electrical resistivity) and thermal conductivity (even below 0.6 W m-1 K-1 at 760 K) for larger In-content are observed. Although ß-In0.67□0.33In2S4 (ß-In2S3) is a distinct polymorphic modification, it followed the abovementioned trend in thermal conductivity and displayed significantly higher charge carrier mobility (∼104 cm2 V-1 s-1 at RT). These findings indicate that structural disorder in the α-modification affects both electronic and thermal properties in this thiospinel. The reduction of thermal conductivity counterbalances a lowered power factor and, thus, the thermoelectric figure of merit ZTmax = 0.2 at 760 K is nearly the same for both α- and ß-In1-x□xIn2S4.

12.
Materials (Basel) ; 12(10)2019 May 27.
Article in English | MEDLINE | ID: mdl-31137868

ABSTRACT

Thermoelectric properties of the half-Heusler phase ScNiSb (space group F 4 ¯ 3m) were studied on a polycrystalline single-phase sample obtained by arc-melting and spark-plasma-sintering techniques. Measurements of the thermopower, electrical resistivity, and thermal conductivity were performed in the wide temperature range 2-950 K. The material appeared as a p-type conductor, with a fairly large, positive Seebeck coefficient of about 240 µV K-1 near 450 K. Nevertheless, the measured electrical resistivity values were relatively high (83 µΩm at 350 K), resulting in a rather small magnitude of the power factor (less than 1 × 10-3 W m-1 K-2) in the temperature range examined. Furthermore, the thermal conductivity was high, with a local minimum of about 6 W m-1 K-1 occurring near 600 K. As a result, the dimensionless thermoelectric figure of merit showed a maximum of 0.1 at 810 K. This work suggests that ScNiSb could be a promising base compound for obtaining thermoelectric materials for energy conversion at high temperatures.

13.
Inorg Chem ; 57(3): 1259-1268, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29323485

ABSTRACT

The Magnéli phase V6O11 was synthesized in gram amounts from a powder mixture of V6O11/V7O13 and vanadium metal, using the spark plasma sintering (SPS) technique. Its structure was determined with synchrotron X-ray powder diffraction data from a phase-pure sample synthesized by conventional solid-state synthesis. A special feature of Magnéli-type oxides is a combination of crystallographic shear and intrinsic disorder that leads to relatively low lattice thermal conductivities. SPS prepared V6O11 has a relatively low thermal conductivity of κ = 2.72 ± 0.06 W (m K)-1 while being a n-type conductor with an electrical conductivity of σ = 0.039 ± 0.005 (µΩ m)-1, a Seebeck coefficient of α = -(35 ± 2) µV K-1, which leads to a power factor of PF = 4.9 ± 0.8 × 10-5W (m K2)-1 at ∼600 K. Advances in the application of Magnéli phases are mostly hindered by synthetic and processing challenges, especially when metastable and nanostructured materials such as V6O11 are involved. This study gives insight into the complications of SPS-assisted synthesis of complex oxide materials, provides new information about the thermal and electrical properties of vanadium oxides at high temperatures, and supports the concept of reducing the thermal conductivity of materials with structural building blocks such as crystallographic shear (CS) planes.

14.
J Phys Condens Matter ; 29(49): 495603, 2017 Dec 13.
Article in English | MEDLINE | ID: mdl-29099390

ABSTRACT

The superconducting properties of [Formula: see text]Mo6S8 [[Formula: see text]] Chevrel phase [[Formula: see text] K] are studied on a sample compacted by spark plasma sintering. Both lower ([Formula: see text] mT) and the upper [[Formula: see text] T] critical magnetic fields are obtained from magnetization and electrical resistivity measurements for the first time. The analysis of the low-temperature electronic specific heat indicates [Formula: see text]Mo6S8 to be a two band superconductor with the energy gaps [Formula: see text] meV (95%) and [Formula: see text] meV (5%). Theoretical DFT calculations reveal a much stronger electron-phonon coupling in the studied Chevrel phase compared to earlier reports. Similar to MgB2, the Fermi surface of studied Chevrel phase is formed by two hole-like and one electron-like bands.

15.
Inorg Chem ; 55(17): 8808-15, 2016 Sep 06.
Article in English | MEDLINE | ID: mdl-27518909

ABSTRACT

Pd3Bi2S2 and Pd3Bi2Se2 have been successfully prepared in the form of nanoparticles with diameters of ∼50 nm by microwave-assisted modified polyol synthesis at low temperatures. The composition and morphology of the samples have been studied by means of powder X-ray diffraction as well as electron microscopy methods, including X-ray intensity mapping on the nanoscale. Superconducting properties of the as-prepared samples have been characterized by electrical resistivity measurements down to low temperatures (∼0.2 K). Deviations from the bulk metallic behavior originating from the submicrometer nature of the samples were registered for both phases. A significant critical-field enhancement up to 1.4 T, i.e., 4 times higher than the value of the bulk material, has been revealed for Pd3Bi2Se2. At the same time, the critical temperature is suppressed to 0.7 K from the bulk value of ∼1 K. A superconducting transition at 0.4 K has been observed in nanocrystalline Pd3Bi2S2. Here, a zero-temperature upper critical field of ∼0.5 T has been estimated. Further, spark plasma-sintered Pd3Bi2S2 and Pd3Bi2Se2 samples have been investigated. Their superconducting properties are found to lie between those of the bulk and nanosized samples.

16.
Materials (Basel) ; 9(7)2016 Jul 19.
Article in English | MEDLINE | ID: mdl-28773710

ABSTRACT

The binary intermetallic clathrates K8-xSi46 (x = 0.4; 1.2), Rb6.2Si46, Rb11.5Si136 and Cs7.8Si136 were prepared from M4Si4 (M = K, Rb, Cs) precursors by spark-plasma route (SPS) and structurally characterized by Rietveld refinement of PXRD data. The clathrate-II phase Rb11.5Si136 was synthesized for the first time. Partial crystallographic site occupancy of the alkali metals, particularly for the smaller Si20 dodecahedra, was found in all compounds. SPS preparation of Na24Si136 with different SPS current polarities and tooling were performed in order to investigate the role of the electric field on clathrate formation. The electrical and thermal transport properties of K7.6Si46 and K6.8Si46 in the temperature range 4-700 K were investigated. Our findings demonstrate that SPS is a novel tool for the synthesis of intermetallic clathrate phases that are not easily accessible by conventional synthesis techniques.

17.
Dalton Trans ; 43(44): 16788-94, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25286143

ABSTRACT

Polycrystalline samples of Cu(3-x)Sn(x)Se3 were synthesized in the composition range x = 0.87-1.05. A compositionally induced evolvement from tetragonal via cubic to monoclinic crystal structures is observed, when the composition changes from a Cu-rich to a Sn-rich one. The Cu(3-x)Sn(x)Se3 materials show a metal-to-semiconductor transition with increasing x. Electronic transport properties are governed by the charge-carrier concentration which is well described by a linear dispersion-band model. The lattice component of the thermal conductivity is practically independent of x which is attributed to the opposite influence of the atomic ordering and the inhomogeneous distribution of the Cu-Se or Sn-Se bonds with different polarities in the crystal structure. The highest thermoelectric figure of merit ZT of 0.34 is achieved for x = 1.025 at 700 K.

18.
Dalton Trans ; 43(2): 558-62, 2014 Jan 14.
Article in English | MEDLINE | ID: mdl-24127062

ABSTRACT

Nanoparticular FeSb2 was prepared in solution from cyclopentadienyl iron(ii) dicarbonyl dimer [Fe(Cp(CO)2)]2 and antimony nanoparticles. Spark plasma sintering was used as consolidation method to maintain the particle size. The thermoelectric performance of FeSb2 is limited by its high thermal conductivity. In this work, the thermal conductivity was suppressed by nearly 80% compared to the bulk value by introducing grain boundary scattering of phonons on the nanoscale. The thermoelectric properties of the consolidated FeSb2 emphasize the possibility of altering thermal transport of promising thermoelectric compounds by phonon scattering by engineering the interfaces at the nanoscale.

19.
Phys Chem Chem Phys ; 15(37): 15399-403, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-23936907

ABSTRACT

Engineering of nanoscale structures is a requisite for controlling the electrical and thermal transport in solids, in particular for thermoelectric applications that require a conflicting combination of low thermal conductivity and low electrical resistivity. We report the thermoelectric properties of spark plasma sintered Magnéli phases WO2.90 and WO2.722. The crystallographic shear planes, which are a typical feature of the crystal structures of Magnéli-type metal oxides, lead to a remarkably low thermal conductivity for WO2.90. The figures of merit (ZT = 0.13 at 1100 K for WO2.90 and 0.07 at 1100 K for WO2.722) are relatively high for tungsten-oxygen compounds and metal oxides in general. The electrical resistivity of WO2.722 shows a metallic behaviour with temperature, while WO2.90 has the characteristics of a heavily doped semiconductor. The low thermopower of 80 µV K(-1) at 1100 K for WO2.90 is attributed to its high charge carrier concentration. The enhanced thermoelectric performance for WO2.90 compared to WO2.722 originates from its much lower thermal conductivity, due to the presence of crystallographic shear and dislocations in the crystal structure. Our study is a proof of principle for the development of efficient and low-cost thermoelectric materials based on the use of intrinsically nanostructured materials rather than artificially structured layered systems to reduce lattice thermal conductivity.

20.
Inorg Chem ; 52(15): 8971-8, 2013 Aug 05.
Article in English | MEDLINE | ID: mdl-23863037

ABSTRACT

Two atomic arrangements were found near the equiatomic composition in the strontium-lithium-arsenic system. Orthorhombic o-SrLiAs was synthesized by reaction of elemental components at 950 °C, followed by annealing at 800 °C and subsequent quenching in water. The hexagonal modification h-SrLi(1-x)As was obtained from annealing of o-SrLiAs at 550 °C in dynamic vacuum. The structures of both phases were determined by single-crystal X-ray diffraction: o-SrLiAs, structure type TiNiSi, space group Pnma, Pearson symbol oP12, a = 7.6458(2) Å, b = 4.5158(1) Å, c = 8.0403(3) Å, V = 277.61(2) Å(3), R(F) = 0.028 for 558 reflections; h-SrLi(1-x)As, structure type ZrBeSi, space group P6(3)/mmc, Pearson symbol hP6, a = 4.49277(9) Å, c = 8.0970(3) Å, V = 141.54(1) Å(3), RF = 0.026 for 113 reflections. The analysis of the electron density within the framework of the quantum theory of atoms in molecules revealed a charge transfer according to the Sr(1.3+)Li(0.8+)As(2.1-), in agreement with the electronegativities of the individual elements. The electron localizability indicator distribution indicated the formation of a 3D anionic framework [LiAs] in o-SrLiAs and a rather 2D anionic framework [LiAs] in h-SrLi(1-x)As. Magnetic susceptibility measurements point to a diamagnetic character of both phases, which verifies the calculated electronic density of states.

SELECTION OF CITATIONS
SEARCH DETAIL
...