Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Tissue Eng Part B Rev ; 21(1): 67-74, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25011932

ABSTRACT

The migration of cells is a complex process that is dependent on the properties of the surrounding environment. In vivo, the extracellular environment is complex with a wide range of physical features, topographies, and protein compositions. There have been a number of approaches to design substrates that can recapitulate the complex architecture in vivo. Two-dimensional (2D) substrates have been widely used to study the effect of material properties on cell migration. However, such substrates do not capture the intricate structure of the extracellular environment. Recent advances in hydrogel assembly and patterning techniques have enabled the design of new three-dimensional (3D) scaffolds and microenvironments. Investigations conducted on these matrices provide growing evidence that several established migratory trends obtained from studies on 2D substrates could be significantly different when conducted in a 3D environment. Since cell migration is closely linked to a wide range of physiological functions, there is a critical need to examine migratory trends on 3D matrices. In this review, our goal is to highlight recent experimental studies on cell migration within engineered 3D hydrogel environments and how they differ from planar substrates. We provide a detailed examination of the changes in cellular characteristics such as morphology, speed, directionality, and protein expression in 3D hydrogel environments. This growing field of research will have a significant impact on tissue engineering, regenerative medicine, and in the design of biomaterials.


Subject(s)
Cell Movement/drug effects , Hydrogel, Polyethylene Glycol Dimethacrylate/pharmacology , Tissue Scaffolds/chemistry , Animals , Cell Shape/drug effects , Focal Adhesions/drug effects , Focal Adhesions/metabolism , Humans
2.
Biomacromolecules ; 12(7): 2434-9, 2011 Jul 11.
Article in English | MEDLINE | ID: mdl-21615075

ABSTRACT

The selective detection of crystalline cellulose in biomass was demonstrated with sum-frequency-generation (SFG) vibration spectroscopy. SFG is a second-order nonlinear optical response from a system where the optical centrosymmetry is broken. In secondary plant cell walls that contain mostly cellulose, hemicellulose, and lignin with varying concentrations, only certain vibration modes in the crystalline cellulose structure can meet the noninversion symmetry requirements. Thus, SFG can be used to detect and analyze crystalline cellulose selectively in lignocellulosic biomass without extraction of noncellulosic species from biomass or deconvolution of amorphous spectra. The selective detection of crystalline cellulose in lignocellulosic biomass is not readily achievable with other techniques such as XRD, solid-state NMR, IR, and Raman analyses. Therefore, the SFG analysis presents a unique opportunity to reveal the cellulose crystalline structure in lignocellulosic biomass.


Subject(s)
Betula/chemistry , Cell Wall/chemistry , Cellulose/analysis , Pinus taeda/chemistry , Quercus/chemistry , Betula/cytology , Biomass , Crystallization , Nonlinear Dynamics , Pinus taeda/cytology , Quercus/cytology , Spectrophotometry, Infrared , Spectrum Analysis, Raman , Vibration
3.
Langmuir ; 27(11): 6808-13, 2011 Jun 07.
Article in English | MEDLINE | ID: mdl-21534544

ABSTRACT

The nanoscale spreading of a cationic polymer lubricant (CPL) film consisting of polydimethylsiloxane with quaternary ammonium salt side chains on a SiO(2) surface was studied with the disjoining pressure measurements using atomic force microscopy. CPL shows a monotonic decrease in disjoining pressure as the film thickness increases from 1.3 to 4.5 nm, which suggests stable spreading in this thickness range. Comparing the spreading rates calculated from disjoining pressure and the viscosity of CLP to the self-healing time after tribo-contacts revealed that the ionic form may not be the main mobile species. The X-ray photoelectron spectroscopy analysis found that the CPL film on SiO(2) has about 30% of the quaternary ammonium salts (cationic groups) reduced to tertiary amines (neutral groups). The reduced CPL polymer has much lower viscosity than the original CPL polymer and yields a spreading rate consistent with that measured at the macroscale. Thus, the mobile component in the CPL/SiO(2) film responsible for self-healing is concluded to be the reduced tertiary amine components of CPL.

SELECTION OF CITATIONS
SEARCH DETAIL
...