Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Life Sci ; 80(6): 147, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37171617

ABSTRACT

BACKGROUND: Functional profiling of freshly isolated glioblastoma (GBM) cells is being evaluated as a next-generation method for precision oncology. While promising, its success largely depends on the method to evaluate treatment activity which requires sufficient resolution and specificity. METHODS: Here, we describe the 'precision oncology by single-cell profiling using ex vivo readouts of functionality' (PROSPERO) assay to evaluate the intrinsic susceptibility of high-grade brain tumor cells to respond to therapy. Different from other assays, PROSPERO extends beyond life/death screening by rapidly evaluating acute molecular drug responses at single-cell resolution. RESULTS: The PROSPERO assay was developed by correlating short-term single-cell molecular signatures using mass cytometry by time-of-flight (CyTOF) to long-term cytotoxicity readouts in representative patient-derived glioblastoma cell cultures (n = 14) that were exposed to radiotherapy and the small-molecule p53/MDM2 inhibitor AMG232. The predictive model was subsequently projected to evaluate drug activity in freshly resected GBM samples from patients (n = 34). Here, PROSPERO revealed an overall limited capacity of tumor cells to respond to therapy, as reflected by the inability to induce key molecular markers upon ex vivo treatment exposure, while retaining proliferative capacity, insights that were validated in patient-derived xenograft (PDX) models. This approach also allowed the investigation of cellular plasticity, which in PDCLs highlighted therapy-induced proneural-to-mesenchymal (PMT) transitions, while in patients' samples this was more heterogeneous. CONCLUSION: PROSPERO provides a precise way to evaluate therapy efficacy by measuring molecular drug responses using specific biomarker changes in freshly resected brain tumor samples, in addition to providing key functional insights in cellular behavior, which may ultimately complement standard, clinical biomarker evaluations.


Subject(s)
Antineoplastic Agents , Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/pathology , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Precision Medicine , Antineoplastic Agents/therapeutic use , Xenograft Model Antitumor Assays , Cell Line, Tumor
2.
Sci Transl Med ; 15(691): eadd1016, 2023 04 12.
Article in English | MEDLINE | ID: mdl-37043555

ABSTRACT

Clinically relevant immunological biomarkers that discriminate between diverse hypofunctional states of tumor-associated CD8+ T cells remain disputed. Using multiomics analysis of CD8+ T cell features across multiple patient cohorts and tumor types, we identified tumor niche-dependent exhausted and other types of hypofunctional CD8+ T cell states. CD8+ T cells in "supportive" niches, like melanoma or lung cancer, exhibited features of tumor reactivity-driven exhaustion (CD8+ TEX). These included a proficient effector memory phenotype, an expanded T cell receptor (TCR) repertoire linked to effector exhaustion signaling, and a cancer-relevant T cell-activating immunopeptidome composed of largely shared cancer antigens or neoantigens. In contrast, "nonsupportive" niches, like glioblastoma, were enriched for features of hypofunctionality distinct from canonical exhaustion. This included immature or insufficiently activated T cell states, high wound healing signatures, nonexpanded TCR repertoires linked to anti-inflammatory signaling, high T cell-recognizable self-epitopes, and an antiproliferative state linked to stress or prodeath responses. In situ spatial mapping of glioblastoma highlighted the prevalence of dysfunctional CD4+:CD8+ T cell interactions, whereas ex vivo single-cell secretome mapping of glioblastoma CD8+ T cells confirmed negligible effector functionality and a promyeloid, wound healing-like chemokine profile. Within immuno-oncology clinical trials, anti-programmed cell death protein 1 (PD-1) immunotherapy facilitated glioblastoma's tolerogenic disparities, whereas dendritic cell (DC) vaccines partly corrected them. Accordingly, recipients of a DC vaccine for glioblastoma had high effector memory CD8+ T cells and evidence of antigen-specific immunity. Collectively, we provide an atlas for assessing different CD8+ T cell hypofunctional states in immunogenic versus nonimmunogenic cancers.


Subject(s)
Glioblastoma , Lung Neoplasms , Humans , CD8-Positive T-Lymphocytes , Glioblastoma/metabolism , Multiomics , Receptors, Antigen, T-Cell/metabolism
3.
Nat Neurosci ; 24(4): 595-610, 2021 04.
Article in English | MEDLINE | ID: mdl-33782623

ABSTRACT

Glioblastomas are aggressive primary brain cancers that recur as therapy-resistant tumors. Myeloid cells control glioblastoma malignancy, but their dynamics during disease progression remain poorly understood. Here, we employed single-cell RNA sequencing and CITE-seq to map the glioblastoma immune landscape in mouse tumors and in patients with newly diagnosed disease or recurrence. This revealed a large and diverse myeloid compartment, with dendritic cell and macrophage populations that were conserved across species and dynamic across disease stages. Tumor-associated macrophages (TAMs) consisted of microglia- or monocyte-derived populations, with both exhibiting additional heterogeneity, including subsets with conserved lipid and hypoxic signatures. Microglia- and monocyte-derived TAMs were self-renewing populations that competed for space and could be depleted via CSF1R blockade. Microglia-derived TAMs were predominant in newly diagnosed tumors, but were outnumbered by monocyte-derived TAMs following recurrence, especially in hypoxic tumor environments. Our results unravel the glioblastoma myeloid landscape and provide a framework for future therapeutic interventions.


Subject(s)
Brain Neoplasms/immunology , Glioblastoma/immunology , Tumor-Associated Macrophages/cytology , Tumor-Associated Macrophages/immunology , Animals , Humans , Mice , Single-Cell Analysis
4.
J Neurosurg Spine ; 20(4): 459-63, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24484305

ABSTRACT

The authors report on two 70-year-old monozygotic twin sisters who both suffered severe nontraumatic atlantoaxial instability. If either had been a solitary case, degenerative atlantoaxial instability would have been the most straightforward diagnosis. In this case report the authors attempt to answer the question of whether an underlying congenital predisposition might be involved.


Subject(s)
Atlanto-Axial Joint/diagnostic imaging , Diseases in Twins/diagnostic imaging , Joint Instability/diagnostic imaging , Aged , Atlanto-Axial Joint/surgery , Diseases in Twins/genetics , Diseases in Twins/surgery , Female , Humans , Joint Instability/genetics , Joint Instability/surgery , Laminectomy , Radiography , Spinal Fusion , Treatment Outcome , Twins, Monozygotic
SELECTION OF CITATIONS
SEARCH DETAIL
...