Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 58(20): 7239-59, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-24061289

ABSTRACT

A novel technique based on Fourier transform theory has been developed that directly extracts respiratory information from projections without the use of external surrogates. While the feasibility has been demonstrated with three patients, a more extensive validation is necessary. Therefore, the purpose of this work is to investigate the effects of a variety of respiratory and anatomical scenarios on the performance of the technique with the 4D digital extended cardiac torso phantom. FT-phase and FT-magnitude methods were each applied to identify peak-inspiration projections and quantitatively compared to the gold standard of visual identification. Both methods proved to be robust across the studied scenarios with average differences in respiratory phase <10% and percentage of projections assigned within 10% of the gold standard >90%, when incorporating minor modifications to region-of-interest (ROI) selection and/or low-frequency location for select cases of DA and lung percentage in the field of view of the projection. Nevertheless, in the instance where one method initially faltered, the other method prevailed and successfully identified peak-inspiration projections. This is promising because it suggests that the two methods provide complementary information to each other. To ensure appropriate clinical adaptation of markerless, self-sorted four-dimensional cone-beam CT (4D-CBCT), perhaps an optimal integration of the two methods can be developed.


Subject(s)
Anatomy , Cone-Beam Computed Tomography/methods , Four-Dimensional Computed Tomography/methods , Fourier Analysis , Image Processing, Computer-Assisted/methods , Respiration , Respiratory-Gated Imaging Techniques/methods , Adipose Tissue/pathology , Adult , Body Mass Index , Female , Humans , Male , Middle Aged , Movement , Neoplasms/diagnostic imaging , Neoplasms/pathology , Neoplasms/physiopathology , Phantoms, Imaging , Signal-To-Noise Ratio
2.
Med Phys ; 39(6Part9): 3700-3701, 2012 Jun.
Article in English | MEDLINE | ID: mdl-28519024

ABSTRACT

PURPOSE: Irregular breathing causes variation in delineation of internal target volume (ITV), which is typically generated in the maximum intensity projection (MIP) images [1]. Previous studies have shown that MIP-based ITV can underestimate true tumor range [2]. This study examines a simple method to reduce such errors by combining the GTV of 3D-CT with the ITV of MIP. METHODS: The Computerized Imaging Reference Systems (CIRS) Dynamic Thorax Phantom Model 008A (CIRS, Norfolk, VA) with CIRS motion control software was used to model 4 irregular patient respiratory profiles and one regular respiratory profile (sine wave). A 3 cm tumor insert was used as target. For each breathing profile, a 3D-CT and 3 repeated 4D-CT scans with random intervals within the breathing profile were performed on a 4-slice clinical scanner (Lightspeed, GE, WI). The RPM system (Varian, Palo Alto, CA) was used to track the respiratory profiles. GTV was contoured on 3D-CT, and ITV was contoured on each MIP (ITVMIP) using a consistent lung window by the same person. The new method of creating ITV was to combine the GTV and ITVMIP, namely ITVCOMB. To evaluate which ITV is more accurate, ITVCOMB and ITVMIP were compared to a 'ground truth' ITV (ITVGT) which was generated by combining the three ITVMIPs. RESULTS: For the regular profile, both ITVMIP (27.25 cm3 ) and ITVCOMB (28.12 cm3 ) were comparable to ITVGT (27.25 cm3 ). For irregular profiles, the mean absolute difference between ITVCOMB and ITVGT (6.3%±4.9) was significantly (p-value=0.0078) smaller than that between ITVMIP and ITVGT (18.1%±12.3). CONCLUSIONS: The results suggest that combining GTV of the 3D-CT with the ITV of the MIP is more accurate than the ITV of the MIP alone, and thus would be a simple method to reduce breathing irregularity induced errors in ITV delineation for treatment planning of lung cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...