Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
Acta Neurochir (Wien) ; 166(1): 288, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980421

ABSTRACT

PURPOSE: Postoperative management following elective cranial surgery, particularly after biopsy procedures, varies significantly across neurosurgical centres. Routine postoperative head CT scans, traditionally performed to detect complications such as intracranial bleeding or cerebral oedema, lack substantial evidence supporting their necessity. METHODS: This study is a retrospective cohort analysis conducted at a regional neurosurgical department of 236 patients who underwent brain biopsies between 2018 and 2022. Patient data, including demographics, surgical details, and postoperative outcomes, were collected and analysed. The outcomes investigated were the incidence and impact of postoperative CT scans on time to discharge, management changes, and the influence of preoperative anticoagulation. RESULTS: Out of 236 patients, 205 (86.86%) underwent postoperative CT scans. There was no significant relationship between postoperative hematoma, as detected on a CT scan, and neurological deficit (p = 0.443), or between preoperative anticoagulation and postoperative bleeding on CT scans (p = 0.464). Patients who had postoperative CT scans had a significantly longer length of stay (LOS) compared to those who did not (p < 0.001). Intraoperative bleeding was a predictor of hematoma on postoperative CT (p = 0.017) but not of postoperative neurological deficit. The routine postoperative CT scan showed limited predictive value for symptomatic deficits, with a positive predictive value of 6.67% and a negative predictive value of 96.88%. CONCLUSIONS: Routine postoperative CT scans after brain biopsies do not significantly impact management or improve patient outcomes but are associated with longer hospital stays. CT scans should be reserved for patients showing clinical signs of complications rather than used as a routine procedure after a brain biopsy.


Subject(s)
Brain , Tomography, X-Ray Computed , Humans , Male , Retrospective Studies , Female , Middle Aged , Adult , Biopsy/methods , Biopsy/adverse effects , Aged , Brain/pathology , Brain/diagnostic imaging , Brain/surgery , Postoperative Complications , Cohort Studies , Postoperative Care/methods , Length of Stay , Neurosurgical Procedures/methods , Neurosurgical Procedures/adverse effects
2.
Cereb Cortex ; 34(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38879808

ABSTRACT

Navigated repetitive transmagnetic stimulation is a non-invasive and safe brain activity modulation technique. When combined with the classical rehabilitation process in stroke patients it has the potential to enhance the overall neurologic recovery. We present a case of a peri-operative stroke, treated with ultra-early low frequency navigated repetitive transmagnetic stimulation over the contralesional hemisphere. The patient received low frequency navigated repetitive transmagnetic stimulation within 12 hours of stroke onset for seven consecutive days and a significant improvement in his right sided weakness was noticed and he was discharge with normal power. This was accompanied by an increase in the number of positive responses evoked by navigated repetitive transmagnetic stimulation and a decrease of the resting motor thresholds at a cortical level. Subcortically, a decrease in the radial, axial, and mean diffusivity were recorded in the ipsilateral corticospinal tract and an increase in fractional anisotropy, axial diffusivity, and mean diffusivity was observed in the interhemispheric fibers of the corpus callosum responsible for the interhemispheric connectivity between motor areas. Our case demonstrates clearly that ultra-early low frequency navigated repetitive transmagnetic stimulation applied to the contralateral motor cortex can lead to significant clinical motor improvement in patients with subcortical stroke.


Subject(s)
Stroke , Transcranial Magnetic Stimulation , Humans , Male , Transcranial Magnetic Stimulation/methods , Stroke/physiopathology , Stroke/surgery , Motor Cortex/physiopathology , Motor Cortex/diagnostic imaging , Middle Aged , Aged , Pyramidal Tracts/physiopathology , Pyramidal Tracts/diagnostic imaging , Pyramidal Tracts/physiology , Stroke Rehabilitation/methods , Evoked Potentials, Motor/physiology
3.
J Clin Monit Comput ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722406

ABSTRACT

PURPOSE: To this day there is no consensus regarding evidence of usefulness of Intraoperative Neurophysiological Monitoring (IONM). Randomized controlled trials have not been performed in the past mainly because of difficulties in recruitment control subjects. In this study, we propose the use of Bayesian Networks to assess evidence in IONM. METHODS: Single center retrospective study from January 2020 to January 2022. Patients admitted for cranial neurosurgery with intraoperative neuromonitoring were enrolled. We built a Bayesian Network with utility calculation using expert domain knowledge based on logistic regression as potential causal inference between events in surgery that could lead to central nervous system injury and postoperative neurological function. RESULTS: A total of 267 patients were included in the study: 198 (73.9%) underwent neuro-oncology surgery and 69 (26.1%) neurovascular surgery. 50.7% of patients were female while 49.3% were male. Using the Bayesian Network´s original state probabilities, we found that among patients who presented with a reversible signal change that was acted upon, 59% of patients would wake up with no new neurological deficits, 33% with a transitory deficit and 8% with a permanent deficit. If the signal change was permanent, in 16% of the patients the deficit would be transitory and in 51% it would be permanent. 33% of patients would wake up with no new postoperative deficit. Our network also shows that utility increases when corrective actions are taken to revert a signal change. CONCLUSIONS: Bayesian Networks are an effective way to audit clinical practice within IONM. We have found that IONM warnings can serve to prevent neurological deficits in patients, especially when corrective surgical action is taken to attempt to revert signals changes back to baseline properties. We show that Bayesian Networks could be used as a mathematical tool to calculate the utility of conducting IONM, which could save costs in healthcare when performed.

5.
Neurosurgery ; 95(2): 347-356, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38511960

ABSTRACT

BACKGROUND: Navigated transcranial magnetic stimulation (nTMS) is a well-established preoperative mapping tool for motor-eloquent glioma surgery. Machine learning (ML) and nTMS may improve clinical outcome prediction and histological correlation. METHODS: This was a retrospective cohort study of patients who underwent surgery for motor-eloquent gliomas between 2018 and 2022. Ten healthy subjects were included. Preoperative nTMS-derived variables were collected: resting motor threshold (RMT), interhemispheric RMT ratio (iRMTr)-abnormal if above 10%-and cortical excitability score-number of abnormal iRMTrs. World Health Organization (WHO) grade and molecular profile were collected to characterize each tumor. ML models were fitted to the data after statistical feature selection to predict tumor grade. RESULTS: A total of 177 patients were recruited: WHO grade 2-32 patients, WHO grade 3-65 patients, and WHO grade 4-80 patients. For the upper limb, abnormal iRMTr were identified in 22.7% of WHO grade 2, 62.5% of WHO grade 3, and 75.4% of WHO grade 4 patients. For the lower limb, iRMTr was abnormal in 23.1% of WHO grade 2, 67.6% of WHO grade 3%, and 63.6% of WHO grade 4 patients. Cortical excitability score ( P = .04) was statistically significantly related with WHO grading. Using these variables as predictors, the ML model had an accuracy of 0.57 to predict WHO grade 4 lesions. In subgroup analysis of high-grade gliomas vs low-grade gliomas, the accuracy for high-grade gliomas prediction increased to 0.83. The inclusion of molecular data into the model-IDH mutation and 1p19q codeletion status-increases the accuracy of the model in predicting tumor grading (0.95 and 0.74, respectively). CONCLUSION: ML algorithms based on nTMS-derived interhemispheric excitability assessment provide accurate predictions of HGGs affecting the motor pathway. Their accuracy is further increased when molecular data are fitted onto the model paving the way for a joint preoperative approach with radiogenomics.


Subject(s)
Brain Neoplasms , Glioma , Machine Learning , Neoplasm Grading , Transcranial Magnetic Stimulation , Humans , Transcranial Magnetic Stimulation/methods , Glioma/surgery , Glioma/pathology , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Male , Female , Middle Aged , Adult , Retrospective Studies , Motor Cortex/physiopathology , Motor Cortex/pathology , Aged , Young Adult , Evoked Potentials, Motor/physiology , Cohort Studies
6.
World Neurosurg ; 181: e1019-e1037, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37967744

ABSTRACT

BACKGROUND: Transsulcal tubular retractor-assisted minimally invasive parafascicular surgery changes the surgical strategy for deep-seated lesions by promoting a deficit-sparing approach. When integrated with preoperative brain mapping and intraoperative neuromonitoring (IONM), this approach may potentially improve patient outcomes. In this study, we assessed the impact of preoperative brain mapping and IONM in tubular retractor-assisted neuro-oncological surgery. METHODS: This retrospective single-center cohort study included patients who underwent transsulcal tubular retractor-assisted minimally invasive parafascicular surgery for resection of deep-seated brain tumors from 2016 to 2022. The cohort was divided into 3 groups: group 1, no preoperative mapping or IONM (17 patients); group 2, IONM only (25 patients); group 3, both preoperative mapping and IONM (38 patients). RESULTS: We analyzed 80 patients (33 males and 47 females) with a median age of 46.5 years (range: 1-81 years). There was no significant difference in mean tumor volume (26.2 cm3 [range 1.07-97.4 cm3]; P = 0.740) and mean preoperative depth of the tumor (31 mm [range 3-65 mm], P = 0.449) between the groups. A higher proportion of high-grade gliomas and metastases was present within group 3 (P = 0.003). IONM was related to fewer motor (P = 0.041) and language (P = 0.032) deficits at hospital discharge. Preoperative mapping and IONM were also related to shorter length of stay (P = 0.008). CONCLUSIONS: Preoperative and intraoperative brain mapping and monitoring enhance transsulcal tubular retractor-assisted minimally invasive parafascicular surgery in neuro-oncology. Patients had a reduced length of stay and prolonged overall survival. IONM alone reduces postoperative neurological deficit.


Subject(s)
Brain Neoplasms , Glioma , Intraoperative Neurophysiological Monitoring , Male , Female , Humans , Infant , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Retrospective Studies , Cohort Studies , Neurosurgical Procedures , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Glioma/diagnostic imaging , Glioma/surgery
7.
J Neurosurg ; 140(4): 909-919, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37877983

ABSTRACT

OBJECTIVE: Preoperative grading of nonenhancing motor eloquent gliomas is hampered by a lack of specific imaging surrogates. Tumor grading is crucial for the informed consent discussion before tumor resection. In this paper, the authors hypothesized that navigated transcranial magnetic stimulation (nTMS)-derived metrics could provide significant information to distinguish between high- and low-grade motor eloquent gliomas that present as nonenhancing tumors and therefore contribute to improving patient counseling, timing of treatment, preoperative planning, and intraoperative strategies. METHODS: The authors conducted a retrospective single-center cohort study of patients admitted for tumor surgery between January 2018 and April 2022 with a nonenhancing motor eloquent glioma and preoperative bilateral nTMS mapping. nTMS data including resting motor threshold (RMT), interhemispheric RMT ratio (iRMTr), Cortical Excitability Score (CES), area and volume of cortical activation, and motor evoked potential (MEP) characteristics were obtained and integrated with demographic and clinical data. RESULTS: Thirty patients met the inclusion criteria, and 10 healthy participants were recruited for comparison. Seizures were the most common presenting symptom (25 patients) and WHO grade 3 the most common tumor grade (21 patients). The area and volume of functional cortical activation of both the abductor pollicis brevis and first dorsal interosseous muscles were decreased in healthy participants compared with patients with WHO grade 3 glioma (p < 0.05). An abnormal iRMTr for the lower limbs (16.7% [1/6] WHO grade 2, 76.2% [16/21] WHO grade 3, 100% [3/3] WHO grade 4; p = 0.015) and a higher CES (maximal abnormal CES: 0% [0/6] WHO grade 2, 38% [8/21] WHO grade 3, 66.7% [2/3] WHO grade 4; p = 0.010) were associated with the prediction of high-grade lesions. A total of 7280 MEPs were analyzed. A significant increase in the amplitude and a significant decrease in latency in the MEPs for the first dorsal interosseous and abductor digiti minimi muscles (p < 0.0001) were identified in healthy participants compared with WHO grade 3 glioma patients. CONCLUSIONS: Nonenhancing motor eloquent gliomas have a different impact on both anatomical and functional reorganization of motor areas according to their WHO grading.


Subject(s)
Brain Neoplasms , Glioma , Humans , Transcranial Magnetic Stimulation/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Cohort Studies , Retrospective Studies , Glioma/diagnostic imaging , Glioma/surgery , Brain Mapping/methods , Neuronavigation/methods , Evoked Potentials, Motor
8.
Cereb Cortex ; 34(1)2024 01 14.
Article in English | MEDLINE | ID: mdl-38112581

ABSTRACT

Developing neurophysiological tools to predict WHO tumor grade can empower the treating teams for a better surgical decision-making process. A total of 38 patients with supratentorial diffuse gliomas underwent an asleep-awake-sedated craniotomies for tumor removal with intraoperative neuromonitoring. The resting motor threshold was calculated for different train stimulation paradigms during awake and asleep phases. Receiver operating characteristic analysis and Bayesian regression models were performed to analyze the prediction of tumor grading based on the resting motor threshold differences. Significant positive spearman correlations were observed between resting motor threshold excitability difference and WHO tumor grade for train stimulation paradigms of 5 (R = 0.54, P = 0.00063), 4 (R = 0.49, P = 0.002), 3 (R = 0.51, P = 0.001), and 2 pulses (R = 0.54, P = 0.0007). Kruskal-Wallis analysis of the median revealed a positive significant difference between the median of excitability difference and WHO tumor grade in all paradigms. Receiver operating characteristic analysis showed 3 mA difference as the best predictor of high-grade glioma across different patterns of motor pathway stimulation. Bayesian regression found that an excitability difference above 3 mA would indicate a 75.8% probability of a glioma being high grade. Our results suggest that cortical motor excitability difference between the asleep and awake phases in glioma surgery could correlate with tumor grade.


Subject(s)
Brain Neoplasms , Glioma , Humans , Brain Neoplasms/surgery , Wakefulness , Bayes Theorem , Glioma/surgery , Craniotomy/adverse effects , Craniotomy/methods , Efferent Pathways , World Health Organization , Brain Mapping/methods
9.
J Surg Case Rep ; 2023(10): rjad519, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37854516

ABSTRACT

Deep-seated brain tumours are surgically challenging to access. When planning approaches to these lesions, it is important to take into account eloquent cortical areas, grey matter nuclei, and subcortical white matter tracts. Traditionally, access to deep-seated lesions would require brain retraction; however, this is associated with secondary brain damage, which may impair neurological function. A trans-sulcal minimally invasive parafascicular approach allows gentle splitting of brain fibres and is thought to splay rather than sever white matter tracts. This is particularly important when approaching medially located, language-eloquent tumours, which lack brain surface expression. This video describes a minimally invasive approach to a deep-seated, language-eloquent brain tumour. We utilized preoperative cortical and subcortical planning to define a safe surgical corridor. We then demonstrate using intraoperative neuro-monitoring and mapping of the motor and language functions to define the boundaries of surgical resection. We find trans-sulcal minimally invasive parafascicular approach to be a safe and effective technique when approaching language-eloquent lesions medial to the main language subcortical networks.

10.
J Pers Med ; 13(8)2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37623528

ABSTRACT

Surgical management of deep-seated brain tumors requires precise functional navigation and minimally invasive surgery. Preoperative mapping using navigated transcranial magnetic stimulation (nTMS), intraoperative neurophysiological monitoring (IONM), and minimally invasive parafascicular surgery (MIPS) act together in a functional-sparing approach. nTMS also provides a rehabilitation tool to maximize functional recovery. This is a single-center retrospective proof-of-concept cohort study between January 2022 and June 2023 of patients admitted for surgery with motor eloquent deep-seated brain tumors. The study enrolled seven adult patients, five females and two males, with a mean age of 56.28 years old. The lesions were located in the cingulate gyrus (three patients), the central core (two patients), and the basal ganglia (two patients). All patients had preoperative motor deficits. The most common histological diagnosis was metastasis (five patients). The MIPS approach to the mid-cingulate lesions involved a trajectory through the fronto-aslant tract (FAT) and the fronto-striatal tract (FST). No positive nTMS motor responses were resected as part of the outer corridor for MIPS. Direct cortical stimulation produced stable motor-evoked potentials during the surgeries with no warning signs. Gross total resection (GTR) was achieved in three patients and near-total resection (NTR) in four patients. Post-operatively, all patients had a deterioration of motor function with no ischemia in the postoperative imaging (cavity-to-CST distance 0-4 mm). After nTMS with low-frequency stimulation in the contralateral motor cortex, six patients recovered to their preoperative functional status and one patient improved to a better functional condition. A combined Tractography-MIPS-IONM-TMS approach provides a successful functional-sparing approach to deep-seated motor eloquent tumors and a rehabilitation framework for functional recovery after surgery.

11.
Cancers (Basel) ; 15(15)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37568762

ABSTRACT

Brain tumour surgery in visual eloquent areas poses significant challenges to neurosurgeons and has reported inconsistent results. This is a single-centre prospective cohort study of patients admitted for asleep surgery of intra-axial lesions in visual eloquent areas. Demographic and clinical information, data from tractography and visual evoked potentials (VEPs) monitoring were recorded and correlated with visual outcomes. Thirty-nine patients were included (20 females, 19 males; mean age 52.51 ± 14.08 years). Diffuse intrinsic glioma was noted in 61.54% of patients. There was even distribution between the temporal, occipital and parietal lobes, while 55.26% were right hemispheric lesions. Postoperatively, 74.4% remained stable in terms of visual function, 23.1% deteriorated and 2.6% improved. The tumour infiltration of the optic radiation on tractography was significantly related to the visual field deficit after surgery (p = 0.016). Higher N75 (p = 0.036) and P100 (p = 0.023) amplitudes at closure on direct cortical VEP recordings were associated with no new postoperative visual deficit. A threshold of 40% deterioration of the N75 (p = 0.035) and P100 (p = 0.020) amplitudes correlated with a risk of visual field deterioration. To conclude, direct cortical VEP recordings demonstrated a strong correlation with visual outcomes, contrary to transcranial recordings. Invasion of the optic radiation is related to worse visual field outcomes.

12.
J Neurosci Methods ; 396: 109933, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37524245

ABSTRACT

BACKGROUND: Deep learning-based (DL) methods are the best-performing methods for white matter tract segmentation in anatomically healthy subjects. However, tract annotations are variable or absent in clinical data and manual annotations are especially difficult in patients with tumors where normal anatomy may be distorted. Direct cortical and subcortical stimulation is the gold standard ground truth to determine the cortical and sub-cortical lo- cation of motor-eloquent areas intra-operatively. Nonetheless, this technique is invasive, prolongs the surgical procedure, and may cause patient fatigue. Navigated Transcranial Magnetic Stimulation (nTMS) has a well-established correlation to direct cortical stimulation for motor mapping and the added advantage of being able to be acquired pre-operatively. NEW METHOD: In this work, we evaluate the feasibility of using nTMS motor responses as a method to assess corticospinal tract (CST) binary masks and estimated uncertainty generated by a DL-based tract segmentation in patients with diffuse gliomas. RESULTS: Our results show CST binary masks have a high overlap coefficient (OC) with nTMS response masks. A strong negative correlation is found between estimated uncertainty and nTMS response mask distance to the CST binary mask. COMPARISON WITH EXISTING METHODS: We compare our approach (UncSeg) with the state-of-the-art TractSeg in terms of OC between the CST binary masks and nTMS response masks. CONCLUSIONS: In this study, we demonstrate that estimated uncertainty from UncSeg is a good measure of the agreement between the CST binary masks and nTMS response masks distance to the CST binary mask boundary.


Subject(s)
Brain Neoplasms , Glioma , Humans , Transcranial Magnetic Stimulation/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Diffusion Tensor Imaging/methods , Brain Mapping/methods , Glioma/surgery , Neuronavigation/methods
14.
Pract Neurol ; 23(5): 441-445, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37460210

ABSTRACT

Hypertrophic pachymeningitis is a rare disorder of the dura mater of the spine or brain. It can be caused by inflammatory, infective or neoplastic conditions or can be idiopathic. We report a man with hypertrophic pachymeningitis and bilateral chronic subdural haematoma caused by IgG4-related disease. We highlight the diagnostic challenges and discuss possible underlying mechanisms of subdural haematoma formation in inflammatory conditions. Isolated IgG4-related hypertrophic pachymeningitis with chronic subdural haematoma is very rare; previously reported cases have suggested a possible predilection for men in their sixth decade, presenting with headache as the dominant symptom. Given the rarity and complexity of the condition, it should be managed in a multidisciplinary team setting.


Subject(s)
Hematoma, Subdural, Chronic , Meningitis , Male , Humans , Immunoglobulin G , Hematoma, Subdural, Chronic/complications , Hematoma, Subdural, Chronic/diagnostic imaging , Meningitis/complications , Meningitis/diagnostic imaging , Hypertrophy/complications , Hypertrophy/diagnosis , Dura Mater/diagnostic imaging , Magnetic Resonance Imaging/adverse effects
16.
J Pers Med ; 13(6)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37373988

ABSTRACT

MGMT promoter methylation is related to the increased sensitivity of tumour tissue to chemotherapy with temozolomide (TMZ) and thus to improved patient survival. However, it is unclear how the extent of MGMT promoter methylation affects outcomes. In our study, a single-centre retrospective study, we explore the impact of MGMT promoter methylation in patients with glioblastoma who were operated upon with 5-ALA. Demographic, clinical and histology data, and survival rates were assessed. A total of 69 patients formed the study group (mean age 53.75 ± 15.51 years old). Positive 5-ALA fluorescence was noted in 79.41%. A higher percentage of MGMT promoter methylation was related to lower preoperative tumour volume (p = 0.003), a lower likelihood of 5-ALA positive fluorescence (p = 0.041) and a larger extent of resection EoR (p = 0.041). A higher MGMT promoter methylation rate was also related to improved progression-free survival (PFS) and overall survival (OS) (p = 0.008 and p = 0.006, respectively), even when adjusted for the extent of resection (p = 0.034 and p = 0.042, respectively). A higher number of adjuvant chemotherapy cycles was also related to longer PFS and OS (p = 0.049 and p = 0.030, respectively). Therefore, this study suggests MGMT promoter methylation should be considered as a continuous variable. It is a prognostic factor that goes beyond sensitivity to chemotherapy treatment, as a higher percentage of methylation is related not only to increased EoR and increased PFS and OS, but also to lower tumour volume at presentation and a lower likelihood of 5-ALA fluorescence intraoperatively.

17.
J Pers Med ; 13(5)2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37240953

ABSTRACT

Central nervous system lymphoma (CNSL) represents one of the most aggressive forms of extranodal lymphoma. The gold standard for CNSL diagnosis remains the stereotactic biopsy, with a limited role for cytoreductive surgery that has not been supported by historical data. Our study aims to provide a comprehensive overview of neurosurgery's role in the diagnosis of systemic relapsed and primary CNSL, with an emphasis on the impact on management and survival. This is a single center retrospective cohort study with data collected between August 2012 and August 2020, including patients referred with a potential diagnosis of CNSL to the local Neuro-oncology Multidisciplinary Team (MDT). The concordance between the MDT outcome and histopathological confirmation was assessed using diagnostic statistics. A Cox regression is used for overall survival (OS) risk factor analysis, and Kaplan-Meier statistics are performed for three prognostic models. The diagnosis of lymphoma is confirmed in all cases of relapsed CNSL, and in all but two patients who underwent neurosurgery. For the relapsed CNSL group, the highest positive predictive value (PPV) is found for an MDT outcome when lymphoma had been considered as single or topmost probable diagnosis. Neuro-oncology MDT has an important role in establishing the diagnosis in CNSL, not only to plan tissue diagnosis but also to stratify the surgical candidates. The MDT outcome based on history and imaging has good predictive value for cases where lymphoma is considered the most probable diagnosis, with the best prediction for cases of relapsed CNSL, questioning the need for invasive tissue diagnosis in the latter group.

18.
Acta Neurochir (Wien) ; 165(6): 1615-1633, 2023 06.
Article in English | MEDLINE | ID: mdl-36929449

ABSTRACT

BACKGROUND: Diffuse hemispheric glioma, H3 G34-mutant, is a novel paediatric tumour type in the fifth edition of the WHO classification of CNS tumours associated with an invariably poor outcome. We present a comprehensive clinical, imaging and pathological review of this entity. METHODS: Patients with confirmed H3 G34R-mutant high-grade glioma were included in a single-centre retrospective cohort study and examined for clinical, radiological and histo-molecular data. RESULTS: Twelve patients were enrolled in the study - 7 males/5 females; the mean age was 17.5 years (10-57 years). Most patients presented with signs of raised intracranial pressure (8/12). The frontal lobe (60%) was the prevalent location, with a mixed cystic-nodular appearance (10/12) and presence of vascular flow voids coursing through/being encased by the mass (8/12), and all tumours showed cortical invasion. Nine patients had subtotal resection limited by functional margins, two patients underwent supra-total resection, and one patient had biopsy only. 5-ALA was administered to 6 patients, all of whom showed positive fluorescence. Histologically, the tumours showed a marked heterogeneity and aggressive spread along pre-existing brain structures and leptomeninges. In addition to the diagnostic H3 G34R/V mutation, pathogenic variants in TP53 and ATRX genes were found in most cases. Potential targetable mutations in PDGFRA and PIK3CA genes were detected in five cases. The MGMT promoter was highly methylated in half of the samples. Methylation profiling was a useful diagnostic tool and highlighted recurrent structural chromosome abnormalities, such as PDGFRA amplification, CDKN2A/B deletion, PTEN loss and various copy number changes in the cyclin D-CDK4/Rb pathway. Radiochemotherapy was the most common adjuvant treatment (9/12), and the average survival was 19.3 months. CONCLUSIONS: H3 G34R-mutant hemispheric glioma is a distinct entity with characteristic imaging and pathological features. Genomic landscaping of individual tumours can offer an opportunity to adapt individual therapies and improve patient management.


Subject(s)
Brain Neoplasms , Glioma , Male , Female , Humans , Child , Adolescent , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Histones/genetics , Retrospective Studies , Glioma/diagnostic imaging , Glioma/genetics , Glioma/metabolism , Brain/pathology
19.
J Pers Med ; 13(3)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36983649

ABSTRACT

Safe Trajectory planning for navigation guided biopsy (nBx) of motor eloquent tumours (METs) is important to minimise neurological morbidity. Preliminary clinical data suggest that visualisation of the corticospinal tract (CST) and its relation to the tumour may aid in planning a safe trajectory. In this article we assess the impact of tractography in nBx planning in a simulation-based exercise. This single centre cross-sectional study was performed in March 2021 including 10 patients with METs divided into 2 groups: (1) tractography enhanced group (T-nBx; n = 5; CST merged with volumetric MRI); (2) anatomy-based group (A-nBx; n = 5; volumetric MRI only). A biopsy target was chosen on each tumour. Volunteer neurosurgical trainees had to plan a suitable biopsy trajectory on a Stealth S8® workstation for all patients in a single session. A trajectory safety index (TSI) was devised for each trajectory. Data collection and analysis included a comparison of trajectory planning time, trajectory/lobe changes and TSI. A total of 190 trajectories were analysed based on participation from 19 trainees. Mean trajectory planning time for the entire cohort was 225.1 ± 21.97 s. T-nBx required shorter time for planning (p = 0.01). Mean trajectory changes and lobe changes made per biopsy were 3.28 ± 0.29 and 0.45 ± 0.08, respectively. T-nBx required fewer trajectory/lobe changes (p = 0.01). TSI was better in the presence of tractography than A-nBx (p = 0.04). Neurosurgical experience of trainees had no significant impact on the measured parameters despite adjusted analysis. Irrespective of the level of neurosurgical training, surgical planning of navigation guided biopsy for METs may be achieved in less time with a safer trajectory if tractography imaging is available.

20.
World Neurosurg ; 171: e213-e229, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36481447

ABSTRACT

OBJECTIVE: This study aims to review therapeutic strategies in the management of craniospinal tumors in pregnant patients and the factors that may influence the management along with their influence on maternal and fetal outcomes. METHODS: A retrospective single-center cohort study was performed at a tertiary neurosurgical referral center. Pregnant patients referred to the neuro-oncology multidisciplinary meeting (MDM) with craniospinal tumor were included. Ten-year patient data were collected from hospital records and neuro-oncology MDM outcomes. A systematic review was performed of the available literature as per PRISMA guidelines. RESULTS: Twenty-five patients were identified, with a mean age of 31 years. Of these patients, 88% (n = 22) had cranial lesions and 12% (n = 3) had spinal lesions. Most of the patients had World Health Organization grade I/II tumors. Of the patients, 44% underwent surgery when pregnant, whereas in 40%, this was deferred until after the due date. Of patients, 16% did not require surgical intervention and were followed up with serial imaging in the MDM. The left lateral/park bench position was the preferred position for the spinal and posterior fossa lesions. Systematic review and retrospective data led to proposal of treatment algorithms addressing the therapeutic strategy for management of craniospinal tumors during pregnancy. Factors that may influence maternal and fetal outcomes during management of these tumors were identified, including aggressiveness of the tumor and stage of pregnancy. CONCLUSIONS: Craniospinal tumors presenting in pregnancy are challenging. The surgical management needs to be tailored individually and as part of a multidisciplinary team approach. Factors influencing maternal and fetal outcomes are to be considered during management and patient counseling.


Subject(s)
Neoplasms , Pregnancy , Female , Humans , Adult , Retrospective Studies , Cohort Studies , Spine , Algorithms
SELECTION OF CITATIONS
SEARCH DETAIL
...