Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Hum Genet ; 102(2): 309-320, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29394990

ABSTRACT

Exome sequencing has markedly enhanced the discovery of genes implicated in Mendelian disorders, particularly for individuals in whom a known clinical entity could not be assigned. This has led to the recognition that phenotypic heterogeneity resulting from allelic mutations occurs more commonly than previously appreciated. Here, we report that missense variants in CDC42, a gene encoding a small GTPase functioning as an intracellular signaling node, underlie a clinically heterogeneous group of phenotypes characterized by variable growth dysregulation, facial dysmorphism, and neurodevelopmental, immunological, and hematological anomalies, including a phenotype resembling Noonan syndrome, a developmental disorder caused by dysregulated RAS signaling. In silico, in vitro, and in vivo analyses demonstrate that mutations variably perturb CDC42 function by altering the switch between the active and inactive states of the GTPase and/or affecting CDC42 interaction with effectors, and differentially disturb cellular and developmental processes. These findings reveal the remarkably variable impact that dominantly acting CDC42 mutations have on cell function and development, creating challenges in syndrome definition, and exemplify the importance of functional profiling for syndrome recognition and delineation.


Subject(s)
Abnormalities, Multiple/genetics , Craniofacial Abnormalities/genetics , Genetic Heterogeneity , Muscular Atrophy/genetics , Mutation, Missense , Neurodevelopmental Disorders/genetics , Noonan Syndrome/genetics , cdc42 GTP-Binding Protein/genetics , Abnormalities, Multiple/metabolism , Abnormalities, Multiple/pathology , Adolescent , Adult , Child , Child, Preschool , Craniofacial Abnormalities/metabolism , Craniofacial Abnormalities/pathology , Female , Gene Expression , Humans , Infant , Male , Models, Molecular , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Neurodevelopmental Disorders/metabolism , Neurodevelopmental Disorders/pathology , Noonan Syndrome/metabolism , Noonan Syndrome/pathology , Phenotype , Protein Structure, Secondary , Severity of Illness Index , cdc42 GTP-Binding Protein/chemistry , cdc42 GTP-Binding Protein/metabolism
2.
Hum Genomics ; 11(1): 16, 2017 07 19.
Article in English | MEDLINE | ID: mdl-28724397

ABSTRACT

BACKGROUND: The ciliopathies represent an umbrella group of >50 clinical entities that share both clinical features and molecular etiology underscored by structural and functional defects of the primary cilium. Despite the advances in gene discovery, this group of entities continues to pose a diagnostic challenge, in part due to significant genetic and phenotypic heterogeneity and variability. We consulted a pediatric case from asymptomatic, non-consanguineous parents who presented as a suspected ciliopathy due to a constellation of retinal, renal, and skeletal findings. RESULTS: Although clinical panel sequencing of genes implicated in nephrotic syndromes yielded no likely causal mutation, an oligo-SNP microarray identified a ~20-Mb region of homozygosity, with no altered gene dosage, on chromosome 16p13. Intersection of the proband's phenotypes with known disease genes within the homozygous region yielded a single candidate, IFT140, encoding a retrograde intraflagellar transport protein implicated previously in several ciliopathies, including the phenotypically overlapping Mainzer-Saldino syndrome (MZSDS). Sanger sequencing yielded a maternally inherited homozygous c.634G>A; p.Gly212Arg mutation altering the exon 6 splice donor site. Functional studies in cells from the proband showed that the locus produced two transcripts: a majority message containing a mis-splicing event that caused a premature termination codon and a minority message homozygous for the p.Gly212Arg allele. Zebrafish in vivo complementation studies of the latter transcript demonstrated a loss of function effect. Finally, we conducted post-hoc trio-based whole exome sequencing studies to (a) test the possibility of other causal loci in the proband and (b) explain the Mendelian error of segregation for the IFT140 mutation. We show that the proband harbors a chromosome 16 maternal heterodisomy, with segmental isodisomy at 16p13, likely due to a meiosis I error in the maternal gamete. CONCLUSIONS: Using clinical phenotyping combined with research-based genetic and functional studies, we have characterized a recurrent IFT140 mutation in the proband; together, these data are consistent with MZSDS. Additionally, we report a rare instance of a uniparental isodisomy unmasking a deleterious mutation to cause a ciliary disorder.


Subject(s)
B-Lymphocytes/pathology , Carrier Proteins/genetics , Cerebellar Ataxia/genetics , Mutation, Missense , Retinitis Pigmentosa/genetics , Animals , B-Lymphocytes/metabolism , Cells, Cultured , Cerebellar Ataxia/pathology , Child, Preschool , Chromosomes, Human, Pair 16 , Exons , Female , Homozygote , Humans , Male , Pedigree , Phenotype , Retinitis Pigmentosa/pathology , Uniparental Disomy , Zebrafish/metabolism
3.
Am J Med Genet A ; 167A(10): 2402-5, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26012591

ABSTRACT

Mowat-Wilson syndrome (MWS, OMIM# 235730) is a multiple congenital anomaly disorder characterized by intellectual disability, seizures, microcephaly, and distinct facial features. Additional findings include structural brain abnormalities, eye defects, congenital heart defects, Hirschsprung disease (HSCR), and genitourinary anomalies. It is caused by de novo heterozygous mutations or deletions of the ZEB2 gene on chromosome 2q21-q23. We report here on a 10-month-old boy with typical features of MWS who presented with the novel finding of polymicrogyria on brain magnetic resonance imaging. We also review the current literature regarding central nervous system anomalies in MWS.


Subject(s)
Hirschsprung Disease/diagnosis , Homeodomain Proteins/genetics , Intellectual Disability/diagnosis , Microcephaly/diagnosis , Mutation , Polymicrogyria/diagnosis , Repressor Proteins/genetics , Abnormalities, Multiple/pathology , Chromosomes, Human, Pair 2 , Facies , Gene Expression , Heterozygote , Hirschsprung Disease/complications , Hirschsprung Disease/genetics , Hirschsprung Disease/pathology , Humans , Infant , Intellectual Disability/complications , Intellectual Disability/genetics , Intellectual Disability/pathology , Magnetic Resonance Imaging , Male , Microcephaly/complications , Microcephaly/genetics , Microcephaly/pathology , Polymicrogyria/complications , Polymicrogyria/genetics , Polymicrogyria/pathology , Zinc Finger E-box Binding Homeobox 2
4.
Mol Genet Metab ; 111(3): 331-341, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24445252

ABSTRACT

UNLABELLED: Mitochondrial respiratory chain (RC) disease diagnosis is complicated both by an absence of biomarkers that sufficiently divulge all cases and limited capacity to quantify adverse effects across intermediary metabolism. We applied high performance liquid chromatography (HPLC) and mass spectrometry (MS) studies of stable-isotope based precursor-product relationships in the nematode, C. elegans, to interrogate in vivo differences in metabolic flux among distinct genetic models of primary RC defects and closely related metabolic disorders. METHODS: C. elegans strains studied harbor single nuclear gene defects in complex I, II, or III RC subunits (gas-1, mev-1, isp-1); enzymes involved in coenzyme Q biosynthesis (clk-1), the tricarboxylic acid cycle (TCA, idh-1), or pyruvate metabolism (pdha-1); and central nodes of the nutrient-sensing signaling network that involve insulin response (daf-2) or the sirtuin homologue (sir-2.1). Synchronous populations of 2000 early larval stage worms were fed standard Escherichia coli on nematode growth media plates containing 1,6-(13)C2-glucose throughout their developmental period, with samples extracted on the first day of adult life in 4% perchloric acid with an internal standard. Quantitation of whole animal free amino acid concentrations and isotopic incorporation into amino and organic acids throughout development was performed in all strains by HPLC and isotope ratio MS, respectively. GC/MS analysis was also performed to quantify absolute isotopic incorporation in all molecular species of key TCA cycle intermediates in gas-1 and N2 adult worms. RESULTS: Genetic mutations within different metabolic pathways displayed distinct metabolic profiles. RC complex I (gas-1) and III (isp-1) subunit mutants, together with the coenzyme Q biosynthetic mutant (clk-1), shared a similar amino acid profile of elevated alanine and decreased glutamate. The metabolic signature of the complex II mutant (mev-1) was distinct from that of the other RC mutants but resembled that of the TCA cycle mutant (idh-1) and both signaling mutants (daf-2 and sir-2.1). All branched chain amino acid levels were significantly increased in the complex I and III mutants but decreased in the PDH mutant (pdha-1). The RC complex I, coenzyme Q, TCA cycle, and PDH mutants shared significantly increased relative enrichment of lactate+1 and absolute concentration of alanine+1, while glutamate+1 enrichment was significantly decreased uniquely in the RC mutants. Relative intermediary flux analyses were suggestive of proximal TCA cycle disruption in idh-1, completely reduced TCA cycle flux in sir-2.1, and apparent distal TCA cycle alteration in daf-2. GC/MS analysis with universally-labeled (13)C-glucose in adult worms further showed significantly increased isotopic enrichment in lactate, citrate, and malate species in the complex I (gas-1) mutant. CONCLUSIONS: Stable isotopic/mass spectrometric analysis can sensitively discriminate primary RC dysfunction from genetic deficiencies affecting either the TCA cycle or pyruvate metabolism. These data are further suggestive that metabolic flux analysis using stable isotopes may offer a robust means to discriminate and quantify the secondary effects of primary RC dysfunction across intermediary metabolism.


Subject(s)
Caenorhabditis elegans/genetics , Electron Transport Complex II/genetics , Electron Transport Complex I/genetics , Mitochondria/pathology , Mitochondrial Diseases/genetics , Animals , Caenorhabditis elegans/enzymology , Caenorhabditis elegans Proteins/biosynthesis , Caenorhabditis elegans Proteins/metabolism , Chromatography, High Pressure Liquid , Electron Transport Complex I/metabolism , Electron Transport Complex II/metabolism , Escherichia coli/genetics , Humans , Isotope Labeling , Mass Spectrometry , Metabolic Networks and Pathways , Mitochondria/metabolism , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...