Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 7608, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37165058

ABSTRACT

Food waste is a dominant organic constituent of landfills, and a large global source of greenhouse gases. Composting food waste presents a potential opportunity for emissions reduction, but data on whole pile, commercial-scale emissions and the associated biogeochemical drivers are lacking. We used a non-invasive micrometeorological mass balance approach optimized for three-dimensional commercial-scale windrow compost piles to measure methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) emissions continuously during food waste composting. Greenhouse gas flux measurements were complemented with continuous oxygen (O2) and temperature sensors and intensive sampling for biogeochemical processes. Emission factors (EF) ranged from 6.6 to 8.8 kg CH4-C/Mg wet food waste and were driven primarily by low redox and watering events. Composting resulted in low N2O emissions (0.01 kg N2O-N/Mg wet food waste). The overall EF value (CH4 + N2O) for food waste composting was 926 kgCO2e/Mg of dry food waste. Composting emissions were 38-84% lower than equivalent landfilling fluxes with a potential net minimum savings of 1.4 MMT CO2e for California by year 2025. Our results suggest that food waste composting can help mitigate emissions. Increased turning during the thermophilic phase and less watering overall could potentially further lower emissions.


Subject(s)
Composting , Greenhouse Gases , Refuse Disposal , Refuse Disposal/methods , Climate Change , Food , Carbon Dioxide/analysis , Oxygen , Methane/analysis , Nitrous Oxide/analysis , Soil
2.
Glob Chang Biol ; 24(2): e705-e718, 2018 02.
Article in English | MEDLINE | ID: mdl-28981192

ABSTRACT

Soil organic matter (SOM) supports the Earth's ability to sustain terrestrial ecosystems, provide food and fiber, and retains the largest pool of actively cycling carbon. Over 75% of the soil organic carbon (SOC) in the top meter of soil is directly affected by human land use. Large land areas have lost SOC as a result of land use practices, yet there are compensatory opportunities to enhance productivity and SOC storage in degraded lands through improved management practices. Large areas with and without intentional management are also being subjected to rapid changes in climate, making many SOC stocks vulnerable to losses by decomposition or disturbance. In order to quantify potential SOC losses or sequestration at field, regional, and global scales, measurements for detecting changes in SOC are needed. Such measurements and soil-management best practices should be based on well established and emerging scientific understanding of processes of C stabilization and destabilization over various timescales, soil types, and spatial scales. As newly engaged members of the International Soil Carbon Network, we have identified gaps in data, modeling, and communication that underscore the need for an open, shared network to frame and guide the study of SOM and SOC and their management for sustained production and climate regulation.


Subject(s)
Carbon Sequestration , Carbon/chemistry , Ecosystem , International Cooperation , Soil/chemistry , Agriculture , Carbon Cycle , Climate , Climate Change , Databases, Factual , Models, Theoretical
3.
Environ Sci Technol ; 44(19): 7347-50, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20873876

ABSTRACT

Biomass can help reduce greenhouse gas (GHG) emissions by displacing petroleum in the transportation sector, by displacing fossil-based electricity, and by sequestering atmospheric carbon. Which use mitigates the most emissions depends on market and regulatory contexts outside the scope of attributional life cycle assessments. We show that bioelectricity's advantage over liquid biofuels depends on the GHG intensity of the electricity displaced. Bioelectricity that displaces coal-fired electricity could reduce GHG emissions, but bioelectricity that displaces wind electricity could increase GHG emissions. The electricity displaced depends upon existing infrastructure and policies affecting the electric grid. These findings demonstrate how model assumptions about whether the vehicle fleet and bioenergy use are fixed or free parameters constrain the policy questions an analysis can inform. Our bioenergy life cycle assessment can inform questions about a bioenergy mandate's optimal allocation between liquid fuels and electricity generation, but questions about the optimal level of bioenergy use require analyses with different assumptions about fixed and free parameters.


Subject(s)
Biofuels , Climate Change , Policy Making , Decision Making
SELECTION OF CITATIONS
SEARCH DETAIL
...