Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
AoB Plants ; 13(4): plab024, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34249306

ABSTRACT

Ants benefit myrmecophytic plants by two main activities defending them from herbivores and offering nutrients. Ants' territorial defence behaviour also benefits their myrmecophytic plants; in the case of trees, this behaviour includes eliminating structural parasites (epiphytes and lianas). These benefits could also occur with myrmecophytic epiphytes by decreasing the abundance of competing epiphytes. In two subunits of a tropical dry forest in the centre of Mexico, we (i) recorded the diversity of ants associated with the myrmecophyte Tillandsia caput-medusae, and experimentally tested: (ii) the effect of the ants associated with the myrmecophyte in the removal of its seeds and the seeds of other sympatric non-myrmecophyte species of Tillandsia; and (iii) if seed remotion by ants corresponds with epiphyte load in the preferred (Bursera copallifera) and limiting phorophyte species (B. fagaroides, Ipomoea pauciflora and Sapium macrocarpum). In five trees per species, we tied seed batches of T. caput-medusae, T. hubertiana, T. schiedeana and T. recurvata. One seed batch was close, and the other far away from a T. caput-medusae with active ants. Between forest subunits, ant richness was similar, but diversity and evenness differed. Ants diminish seed establishment of all the Tillandsia species; this effect is stronger in the forest subunit with a large ant diversity, maybe because of ant competition. Seed remotion by ants is independent of phorophyte species identity. Although ants can provide benefits to T. caput-medusae, they also could be lowering their abundance.

2.
AoB Plants ; 10(5): ply056, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30338050

ABSTRACT

Seed depredation is recognized as a determining factor in plant community structure and composition. Ants are primary consumers of seeds influencing abundance of epiphytes on trees. This study was conducted in two subunits of a tropical dry forest established on different soil substrates in San Andrés de la Cal, Tepoztlán, in Morelos, Mexico, and experimentally tested whether seed removal activity is higher in tree species with smaller epiphyte loads compared to those with greater epiphyte loads. Five trees were selected at random from six species of trees with high (preferred hosts) or low (limiting hosts) epiphyte loads. Seed removal differed among hosts and different soil substrates in the forest. On relating seed removal to the abundance of arboreal ants, the most consistent pattern was that lower seed removal was related to lower ant abundance, while high seed removal was associated with intermediate to high ant abundance. Epiphyte seed removal by ants influences epiphyte abundance and can contribute considerably to a failure to establish, since it diminishes the quantity of seeds available for germination and establishment.

SELECTION OF CITATIONS
SEARCH DETAIL
...