Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bio Protoc ; 14(10): e4987, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38798979

ABSTRACT

Agrobacterium-mediated transient gene expression in Nicotiana benthamiana is widely used to study gene function in plants. One dramatic phenotype that is frequently screened for is cell death. Here, we present a simplified protocol for Agrobacterium-mediated transient gene expression by infiltration. Compared with current methods, the novel protocol can be done without a centrifuge or spectrometer, thereby suitable for K-12 outreach programs as well as rapidly identifying genes that induce cell death. Key features • The protocol simplifies the widely used Agrobacterium-mediated transient gene expression assay [1] and can be completed within one week when plants are available. • Rice XB3 gene can induce a dramatic and easily identifiable cell death phenotype in Nicotiana benthamiana. • Allows identification of cell death-inducing genes and is suitable for teaching. • Compared to the currently used methods, our protocol omits the use of agroinfiltration buffer, pH meter, temperature-controlled growth chamber, centrifuge, and spectrophotometer. Graphical overview Agrobacterium infiltration (agroinfiltration) of Nicotiana benthamiana. The photo demonstrates the method of agroinfiltration into the abaxial side of leaves using a needleless syringe.

2.
Int Rev Cell Mol Biol ; 386: 133-165, 2024.
Article in English | MEDLINE | ID: mdl-38782498

ABSTRACT

MicroRNAs (miRNAs) are increasingly recognized as central players in the regulation of eukaryotic physiological processes. These small double stranded RNA molecules have emerged as pivotal regulators in the intricate network of cellular signaling pathways, playing significant roles in the development and progression of human cancers. The central theme in miRNA-mediated regulation of signaling pathways involves their ability to target and modulate the expression of pathway components. Aberrant expression of miRNAs can either promote or suppress key signaling events, influencing critical cellular processes such as proliferation, apoptosis, angiogenesis, and metastasis. For example, oncogenic miRNAs often promote cancer progression by targeting tumor suppressors or negative regulators of signaling pathways, thereby enhancing pathway activity. Conversely, tumor-suppressive miRNAs frequently inhibit oncogenic signaling by targeting key components within these pathways. This complex regulatory crosstalk underscores the significance of miRNAs as central players in shaping the signaling landscape of cancer cells. Furthermore, the therapeutic implications of targeting miRNAs in cancer are substantial. miRNAs can be manipulated to restore normal signaling pathway activity, offering a potential avenue for precision medicine. The development of miRNA-based therapeutics, including synthetic miRNA mimics and miRNA inhibitors, has shown promise in preclinical and clinical studies. These strategies aim to either enhance the activity of tumor-suppressive miRNAs or inhibit the function of oncogenic miRNAs, thereby restoring balanced signaling and impeding cancer progression. In conclusion, the crosstalk between miRNAs and signaling pathways in human cancers is a dynamic and influential aspect of cancer biology. Understanding this interplay provides valuable insights into cancer development and progression. Harnessing the therapeutic potential of miRNAs as regulators of signaling pathways opens up exciting opportunities for the development of innovative cancer treatments with the potential to improve patient outcomes. In this chapter, we provide an overview of the crosstalk between miRNAs and signaling pathways in the context of cancer and highlight the potential therapeutic implications of targeting this regulatory interplay.


Subject(s)
MicroRNAs , Neoplasms , Signal Transduction , Humans , MicroRNAs/metabolism , MicroRNAs/genetics , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/therapy , Neoplasms/genetics , Animals , Gene Expression Regulation, Neoplastic
3.
Plant Sci ; 330: 111631, 2023 May.
Article in English | MEDLINE | ID: mdl-36773757

ABSTRACT

Cryptochromes (CRYs) are a class of photoreceptors that perceive blue/ultraviolet-A light of the visible spectrum to mediate a vast number of physiological responses in bacteria, fungi, animals and plants. In the present study, we have characterized OsCRY2 in a photoperiod sensitive indica variety, Basmati 370, by generating and analyzing overexpression (OE) and knock-down (KD) transgenic lines. The OsCRY2OE lines displayed dwarfism as shown in their reduced plant height and leaf length, attributed largely by an overall reduction in their cell size. The OsCRY2OE lines flowered significantly earlier and showed shorter and broader seeds with an overall reduced seed weight. The OsCRY2KD lines showed contrasting phenotypes, such as increased plant height and delayed flowering, however, decreased seed size and weight were also observed in the KD lines, along with reduced spikelet fertility and high seed shattering rate in mature panicles. Novel interactions were confirmed between OsCRY2 and members of ZEITLUPE family of blue/ultraviolet-A light photoreceptors, encoded by OsFBO8, OsFBO9 and OsFBO10 which are orthologous to ZEITLUPE (ZTL), LOV KELCH PROTEIN2 (LKP2) and FLAVIN BINDING, KELCH REPEAT F-BOX1 (FKF1), respectively, of Arabidopsis thaliana. Since FKF1 is known to play a role in regulating photoperiodic flowering, OsFBO10 was chosen for further studies. OsCRY2 and OsFBO10 interacted in the nucleus and cytoplasm of the cell and cross-regulated the expression of each other. They were also found to regulate the expression of several genes involved in photoperiodic flowering in rice. Both OsCRY2 and OsFBO10 played a positive role in photomorphogenic responses in different light conditions. The physical interaction of OsCRY2 with OsFBO10, their involvement in common physiological and developmental pathways and their cross-regulation of each other suggest that the two photoreceptors may regulate common developmental pathways in plants, either jointly or redundantly.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Oryza , Photoperiod , Oryza/genetics , Oryza/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Flowers/metabolism , Plants/metabolism , Gene Expression Regulation, Plant , Light
4.
Protein Sci ; 30(8): 1521-1534, 2021 08.
Article in English | MEDLINE | ID: mdl-33993574

ABSTRACT

Cryptochromes (CRYs) function as blue light photoreceptors in diverse physiological processes in nearly all kingdoms of life. Over the past several decades, they have emerged as the most likely candidates for light-dependent magnetoreception in animals, however, a long history of conflicts between in vitro photochemistry and in vivo behavioral data complicate validation of CRYs as a magnetosensor. In this review, we highlight the origins of conflicts regarding CRY photochemistry and signal transduction, and identify recent data that provides clarity on potential mechanisms of signal transduction in magnetoreception. The review primarily focuses on examining differences in photochemistry and signal transduction in plant and animal CRYs, and identifies potential modes of convergent evolution within these independent lineages that may identify conserved signaling pathways.


Subject(s)
Cryptochromes , Magnetic Phenomena , Signal Transduction , Animals , Models, Molecular , Photobiology , Photochemistry , Plants/chemistry , Plants/metabolism
5.
Sci Rep ; 8(1): 3203, 2018 02 16.
Article in English | MEDLINE | ID: mdl-29453432

ABSTRACT

The circadian clock in plants is the intrinsic rhythmic expression of thousands of genes in a 24 h period, which is set by the day-night cycles in the environment. The study of the circadian clock often requires expression profiling of genes over a large number of samples for which RT-qPCR is invariably used. Reliability of the results depends largely on the house-keeping genes, which serve as control and thus should be chosen carefully to prevent erroneous results. In this study, ten house-keeping genes were chosen from rice for stability analysis with 48 tissue samples harvested from plants subjected to diurnal/circadian cycles. Although, all the genes were found to be stable, however, six of them showed cyclic expression patterns and caused major changes in the expression profiles of the target genes when used to normalize their expression data, thereby making them poor candidates for diurnal/circadian studies. In conclusion, reference genes need to be selected for diurnal/circadian studies with extra caution as more than 80% of transcriptome in plants undergoes cycling, which remains undetected by the gene stability assessment software and can severely affect the RT-qPCR based gene expression profiling. The geometric mean of two or more most stable reference genes is hence recommended for diurnal/circadian studies in plants.


Subject(s)
Circadian Clocks/genetics , Gene Expression Regulation, Plant/physiology , Genes, Essential/genetics , Oryza/genetics , Genes, Plant , Real-Time Polymerase Chain Reaction , Reference Standards
SELECTION OF CITATIONS
SEARCH DETAIL
...