Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 10669, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724577

ABSTRACT

Anaesthetics are used daily in human and veterinary medicine as well as in scientific research. Anaesthetics have an impact on cell homeostasis especially through modulation of protein post-translational modifications. O-GlcNAcylation, a ubiquitous post-translational modification, plays a role in many biological processes. The aims of this study were to evaluate whether (1) anaesthesia influences O-GlcNAcylation and (2) its stimulation affects physiological parameters. Male Wistar rats (n = 38) were anaesthetized with ketamine-xylazine or isoflurane. They randomly received either an intravenous injection of Ringer's lactate or NButGT (10mg/kg) in order to increase O-GlcNAcylation levels. One hour after induction of anaesthesia, haemodynamic parameters and plasmatic markers were evaluated. Heart, brain and lungs were harvested and O-GlcNAcylation levels and O-GlcNAc-related enzymes were evaluated by western blot. Cardiac and pulmonary O-GlcNAcylation levels and cardiac, cerebral and pulmonary O-GlcNAc associated enzyme expression were not impacted with anaesthesia. Compared with ketamine-xylazine, isoflurane had a lower impact on blood pressure, heart rate and glycaemia. Pharmacological stimulation of O-GlcNAcylation by NButGT did not affect the physiological parameters. This study offers unprecedented insights into the regulation of O-GlcNAcylation and O-GlcNAc related enzymes during anaesthesia. Pharmacological stimulation of O-GlcNAcylation over a 1-h period did not disrupt the physiological balance in healthy anaesthetized rats.


Subject(s)
Isoflurane , Ketamine , Rats, Wistar , Xylazine , Animals , Male , Rats , Isoflurane/pharmacology , Ketamine/pharmacology , Xylazine/pharmacology , Anesthesia , Acetylglucosamine/metabolism , Protein Processing, Post-Translational , Brain/metabolism , N-Acetylglucosaminyltransferases/metabolism , Heart Rate/drug effects , Lung/metabolism , Anesthetics/pharmacology , Blood Pressure/drug effects , Hemodynamics
2.
Heliyon ; 10(9): e30526, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38737268

ABSTRACT

Background: Dietary intake and metabolism variations are associated with molecular changes and more particularly in the transcriptome. O-GlcNAcylation is a post-translational modification added and removed respectively by OGT and OGA. The UDP-GlcNAc, the substrate of OGT, is produced by UAP1 and UAP1L1. O-GlcNAcylation is qualified as a metabolic sensor and is involved in the modulation of gene expression. We wanted to unveil if O-GlcNAcylation is linking metabolic transition to transcriptomic changes and to highlight modifications of O-GlcNAcylation during the postnatal cardiac development. Methods: Hearts were harvested from rats at birth (D0), before (D12) and after suckling to weaning transition with normal (D28) or delayed weaning diet from D12 to D28 (D28F). O-GlcNAcylation levels and proteins expression were evaluated by Western blot. Cardiac transcriptomes were evaluated via 3'SRP analysis. Results: Cardiac O-GlcNAcylation levels and nucleocytoplasmic OGT (ncOGT) were decreased at D28 while full length OGA (OGA) was increased. O-GlcNAcylation levels did not changed with delayed weaning diet while ncOGT and OGA were respectively increased and decreased. Uapl1 was the only O-GlcNAcylation-related gene identified as differentially expressed throughout postnatal development. Conclusion: Macronutrients switch promotes changes in the transcriptome landscape that are independent from O-GlcNAcylation levels. UAP1 and UAP1L1 are not the main regulator element of O-GlcNAcylation throughout postnatal development.

3.
J Vis Exp ; (205)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38587369

ABSTRACT

Over the recent decades, the development of animal models allowed us to better understand various pathologies and identify new treatments. Hemorrhagic shock, i.e., organ failure due to rapid loss of a large volume of blood, is associated with a highly complex pathophysiology involving several pathways. Numerous existing animal models of hemorrhagic shock strive to replicate what happens in humans, but these models have limits in terms of clinical relevance, reproducibility, or standardization. The aim of this study was to refine these models to develop a new model of hemorrhagic shock. Briefly, hemorrhagic shock was induced in male Wistar Han rats (11-13 weeks old) by a controlled exsanguination responsible for a drop in the mean arterial pressure. The next phase of 75 min was to maintain a low mean arterial blood pressure, between 32 mmHg and 38 mmHg, to trigger the pathophysiological pathways of hemorrhagic shock. The final phase of the protocol mimicked patient care with an administration of intravenous fluids, Ringer Lactate solution, to elevate the blood pressure. Lactate and behavioral scores were assessed 16 h after the protocol started, while hemodynamics parameters and plasmatic markers were evaluated 24 h after injury. Twenty-four hours post-hemorrhagic shock induction, the mean arterial and diastolic blood pressure were decreased in the hemorrhagic shock group (p < 0.05). Heart rate and systolic blood pressure remained unchanged. All organ damage markers were increased with the hemorrhagic shock (p < 0.05). The lactatemia and behavioral scores were increased compared to the sham group (p < 0.05). In conclusion, we demonstrated that the protocol described here is a relevant model of hemorrhagic shock that can be used in subsequent studies, particularly to evaluate the therapeutic potential of new molecules.


Subject(s)
Shock, Hemorrhagic , Rats , Male , Humans , Animals , Rats, Wistar , Reproducibility of Results , Resuscitation/methods , Isotonic Solutions/therapeutic use , Lactates , Disease Models, Animal
4.
Cells ; 12(7)2023 03 30.
Article in English | MEDLINE | ID: mdl-37048125

ABSTRACT

Sepsis is a life-threatening disease defined as an organ dysfunction caused by a dysregulated host response to an infection. Early diagnosis and prognosis of sepsis are necessary for specific and timely treatment. However, no predictive biomarkers or therapeutic targets are available yet, mainly due to the lack of a pertinent model. A better understanding of the pathophysiological mechanisms associated with sepsis will allow for earlier and more appropriate management. For this purpose, experimental models of sepsis have been set up to decipher the progression and pathophysiology of human sepsis but also to identify new biomarkers or therapeutic targets. These experimental models, although imperfect, have mostly been performed on a murine model. However, due to the different pathophysiology of the species, the results obtained in these studies are difficult to transpose to humans. This underlines the importance of identifying pertinent situations to improve patient care. As humans, horses have the predisposition to develop sepsis spontaneously and may be a promising model for spontaneous sepsis. This review proposes to give first an overview of the different animal species used to model human sepsis, and, secondly, to focus on adult equine sepsis as a spontaneous model of sepsis and its potential implications for human and veterinary medicine.


Subject(s)
Sepsis , Humans , Animals , Horses , Adult , Mice , Sepsis/veterinary , Sepsis/complications , Biomarkers , Early Diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...