Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 651(Pt 1): 895-908, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30266055

ABSTRACT

Global change is severely impacting the biosphere that, through ecosystem services, sustains human well-being. Such impacts are expected to increase unless mitigation management actions are implemented. Despite the call from the scientific and political arenas for their implementation, few studies assess the effectiveness of actions on freshwater-related services. Here, by modeling water provisioning, water purification and erosion control under current and future conditions, we assess future trends of service provision with and without mitigation policies. In particular, two different storylines combine multiple climate, land use/land cover and agricultural management scenarios, and represent a pro-efficiency business as usual (myopic storyline) and a future that considers social and environmental sustainability (sustainable storyline). The mentioned services are modeled for the horizon 2050 and in three South European river basins: Ebro, Adige and Sava, which encompass the wide socio-environmental diversity of the region. Our results indicate that Mediterranean basins (Ebro) are extremely vulnerable to global change respect Alpine (Adige) or Continental (Sava) basins, as the Ebro might experience a decrease in water availability up to 40%, whereas the decrease is of only 2-4% in the Adige or negligible in the Sava. However, Mediterranean basins are also more sensitive to the implementation of mitigation actions, which would compensate the drop in water provisioning. Results also indicate that the regulating services of water purification and erosion control will gain more relevance in the future, as both services increased between 4 and 20% in both global change scenarios as a result of the expansion of agricultural and urban areas. Overall, the impact of global change is diverse among services and across river basins in Southern Europe, with the Mediterranean basins as the most vulnerable and the Continental as the least. The implementation of mitigation actions can compensate the impact and therefore deserves full political attention.


Subject(s)
Conservation of Natural Resources/methods , Ecosystem , Fresh Water , Agriculture , Climate , Climate Change , Europe , Water Quality , Water Supply
2.
Sci Total Environ ; 470-471: 567-77, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24176705

ABSTRACT

Spatial differences in the supply and demand of ecosystem services such as water provisioning often imply that the demand for ecosystem services cannot be fulfilled at the local scale, but it can be fulfilled at larger scales (regional, continental). Differences in the supply:demand (S:D) ratio for a given service result in different values, and these differences might be assessed with monetary or non-monetary metrics. Water scarcity occurs where and when water resources are not enough to meet all the demands, and this affects equally the service of water provisioning and the ecosystem needs. In this study we assess the value of water in a Mediterranean basin under different global change (i.e. both climate and anthropogenic changes) and mitigation scenarios, with a non-monetary metric: the S:D ratio. We computed water balances across the Ebro basin (North-East Spain) with the spatially explicit InVEST model. We highlight the spatial and temporal mismatches existing across a single hydrological basin regarding water provisioning and its consumption, considering or not, the environmental demand (environmental flow). The study shows that water scarcity is commonly a local issue (sub-basin to region), but that all demands are met at the largest considered spatial scale (basin). This was not the case in the worst-case scenario (increasing demands and decreasing supply), as the S:D ratio at the basin scale was near 1, indicating that serious problems of water scarcity might occur in the near future even at the basin scale. The analysis of possible mitigation scenarios reveals that the impact of global change may be counteracted by the decrease of irrigated areas. Furthermore, the comparison between a non-monetary (S:D ratio) and a monetary (water price) valuation metrics reveals that the S:D ratio provides similar values and might be therefore used as a spatially explicit metric to valuate the ecosystem service water provisioning.


Subject(s)
Conservation of Natural Resources/methods , Water Supply/statistics & numerical data , Climate Change , Mediterranean Region , Spain , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...