Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Biobehav Rev ; 159: 105593, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38373643

ABSTRACT

It has been proposed that interbrain synchrony (IBS) may help to elucidate the neural mechanisms underpinning teamwork. As hyperscanning studies have provided abundant findings on IBS in team environments, the current review aims to synthesize the findings of hyperscanning studies in a way that is relevant to the teamwork research. A systematic review was conducted. Included studies were classified according to the IPO (i.e. input, process, output) model of teamwork. Three multi-level meta-analyses were performed to quantify the associations between IBS and the three IPO variables. The methodology followed PRISMA guidelines and the protocol was pre-registered (https://osf.io/7h8sa/). Of the 229 studies, 41 were included, representing 1326 teams. The three meta-analyses found statistically significant positive effects, indicating a positive association between IBS and the three IPO teamwork variables. This study provides evidence that IBS is a relevant measure of the teamwork process and argues for the continued use of IBS to study teamwork.


Subject(s)
Cooperative Behavior , Diencephalon , Humans , Brain
2.
Scand J Med Sci Sports ; 34(1): e14517, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37814520

ABSTRACT

Eccentric, compared to concentric exercise, is proposed to involve different neuro-motor processing strategies and a higher level of mental demand. This study compared eccentric and concentric cycling at matched perceived effort and torque for the mental demand and related-cortical activation patterns. Nineteen men (30 ± 6 years) performed four different 5-min cycling conditions at 30 RPM on a semi-recumbent isokinetic cycle ergometer: (1) concentric at a moderate perceived effort (23 on the CR100® scale) without torque feedback; (2) concentric and (3) eccentric at the same average torque produced in the first condition; and (4) eccentric at the same moderate perceived effort than the first concentric condition. The conditions two to four were randomized. After each condition, mental demand was monitored using the NASA Task Load Index scale. Changes in oxy-(O2 Hb) and deoxy-(HHb) hemoglobin during exercise were measured over both prefrontal cortices and the right parietal lobe from a 15-probe layout using a continuous-wave NIRS system. Mental demand was significantly higher during eccentric compared to concentric cycling (+52%, p = 0.012) and when the exercise intensity was fixed by the torque rather than the perceived effort (+70%, p < 0.001). For both torque- or perceived effort-matched exercises, O2 Hb increased significantly (p < 0.001) in the left and right prefrontal cortices, and right parietal lobe, and HHb decreased in the left, and right, prefrontal cortices during eccentric compared to concentric cycling. This study supports that acute eccentric cycling, compared to concentric cycling, involves a higher mental demand, and frontoparietal network activation.


Subject(s)
Muscle Contraction , Muscle, Skeletal , Humans , Male , Exercise , Exercise Therapy , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Torque , Young Adult , Adult
3.
Sci Rep ; 9(1): 15736, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31673034

ABSTRACT

If health can be defined as adaptability, then measures of adaptability are crucial. Convergent findings across clinical areas established the notion that fractal properties in bio-behavioural variability characterize the healthy condition of the organism, and its adaptive capacities in general. However, ambiguities remain as to the significance of fractal properties: the literature mainly discriminated between healthy vs. pathological states, thereby loosing perspective on the progression in between, and overlooking the distinction between adaptability and effective adaptations of the organism. Here, we design an experimental tapping paradigm involving gradual feedback deprivation in groups of healthy subjects and one deafferented man as a pathological-limit case. We show that distinct types of fractal properties in sensorimotor behaviour characterize, on the one hand impaired functional ability, and on the other hand internal adaptations for maintaining performance despite the imposed constraints. Findings may prove promising for early detection of internal adaptations preceding symptomatic functional decline.


Subject(s)
Fractals , Sensorimotor Cortex/physiology , Acclimatization , Acoustic Stimulation , Adaptation, Physiological , Adult , Causalgia/pathology , Female , Humans , Male , Middle Aged , Young Adult
4.
Restor Neurol Neurosci ; 37(3): 207-218, 2019.
Article in English | MEDLINE | ID: mdl-31227675

ABSTRACT

BACKGROUND: The acute phase of stroke is accompanied by functional changes and interplay of both hemispheres. However, our understanding of how the time course of upper limb functional motor recovery is related to the progression of brain reorganization in the sensorimotor areas remains limited. This study aimed to assess the time course of hemodynamic patterns of cortical sensorimotor areas using functional near infrared spectroscopy (fNIRS) and motor recovery within three months after a stroke. METHOD: Eight right-handed first ischemic/hemorrhagic stroke patients (60±8 years, 3 women) with mild to severe hemiparesis were examined with repetitive fNIRS measurements and motor recovery tests (Fugl-Meyer score) during two months. Hemodynamic changes over the ipsilesional and contralesional sensorimotor areas were collected from a multi-channel fNIRS system during intermittent isometric muscle contractions at self-selected submaximal force levels for each arm. Lateralization index was computed to evaluate the changes in the interhemispheric balance between the cortical sensorimotor areas. RESULTS: Lateralization index values during non-paretic arm movements showed no significant changes over time in patients and were comparable to those observed in eight healthy controls. Paretic-arm movements were associated early with a bilateral cortical activity before shifting to ipsilesional patterns (p < 0.01). Progressive lateralization observed over the two months (p < 0.05) evolved concomitantly with an increase in the Fugl-Meyer score (p < 0.001). CONCLUSIONS: Cortical reorganization monitoring using fNIRS during the first weeks after stroke may be applied for assessing progressive brain plasticity in addition to clinical measures of performance.


Subject(s)
Functional Laterality/physiology , Neuronal Plasticity/physiology , Paresis/physiopathology , Sensorimotor Cortex/physiopathology , Spectroscopy, Near-Infrared , Stroke Rehabilitation , Stroke/physiopathology , Upper Extremity/physiopathology , Aged , Female , Functional Neuroimaging , Humans , Male , Middle Aged , Paresis/diagnostic imaging , Paresis/etiology , Sensorimotor Cortex/diagnostic imaging , Stroke/complications , Stroke/diagnostic imaging , Time Factors
5.
Front Physiol ; 9: 909, 2018.
Article in English | MEDLINE | ID: mdl-30042697

ABSTRACT

In behavioral neuroscience, the adaptability of humans facing different constraints has been addressed on one side at the brain level, where a variety of functional networks dynamically support the same performance, and on the other side at the behavioral level, where fractal properties in sensorimotor variables have been considered as a hallmark of adaptability. To bridge the gap between the two levels of observation, we have jointly investigated the changes of network connectivity in the sensorimotor cortex assessed by modularity analysis and the properties of motor variability assessed by multifractal analysis during a prolonged tapping task. Four groups of participants had to produce the same tapping performance while being deprived from 0, 1, 2, or 3 sensory feedbacks simultaneously (auditory and/or visual and/or tactile). Whereas tapping performance was not statistically different across groups, the number of brain networks involved and the degree of multifractality of the inter-tap interval series were significantly correlated, increasing as a function of feedback deprivation. Our findings provide first evidence that concomitant changes in brain modularity and multifractal properties characterize adaptations underlying unchanged performance. We discuss implications of our findings with respect to the degeneracy properties of complex systems, and the entanglement of adaptability and effective adaptation.

6.
Brain Sci ; 8(5)2018 Apr 24.
Article in English | MEDLINE | ID: mdl-29695123

ABSTRACT

The literature contains limited evidence on how our brains control eccentric movement. A higher activation is expected in the contralateral motor cortex (M1) but consensus has not yet been reached. Therefore, the present study aimed to compare patterns of M1 activation between eccentric and concentric movements. Nine healthy participants performed in a randomized order three sets of five repetitions of eccentric or concentric movement with the dominant elbow flexors over a range of motion of 60° at two velocities (30°/s and 60°/s). The tests were carried out using a Biodex isokinetic dynamometer with the forearm supported in the horizontal plane. The peak torque values were not significantly different between concentric and eccentric movements (p = 0.42). Hemodynamic responses of the contralateral and ipsilateral M1 were measured with a near-infrared spectroscopy system (Oxymon MkIII, Artinis). A higher contralateral M1 activity was found during eccentric movements (p = 0.04, η² = 0.47) and at the velocity of 30°/s (p = 0.039, η² = 0.48). These preliminary findings indicate a specific control mechanism in the contralateral M1 to produce eccentric muscle actions at the angular velocities investigated, although the role of other brain areas in the motor control network cannot be excluded.

7.
Biomed Opt Express ; 8(11): 5326-5341, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29188123

ABSTRACT

Functional near infrared spectroscopy (fNIRS) is a promising neuroimaging method for investigating networks of cortical regions over time. We propose a directed effective connectivity method (TPDC) allowing the capture of both time and frequency evolution of the brain's networks using fNIRS data acquired from healthy subjects performing a continuous finger-tapping task. Using this method we show the directed connectivity patterns among cortical motor regions involved in the task and their significant variations in the strength of information flow exchanges. Intra and inter-hemispheric connections during the motor task with their temporal evolution are also provided. Characterisation of the fluctuations in brain connectivity opens up a new way to assess the organisation of the brain to adapt to changing task constraints, or under pathological conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...