Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 109(6-2): 065209, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39020879

ABSTRACT

Shock-ignition effect in indirect-drive thermonuclear target is demonstrated on the base of numerical simulations. Thermonuclear gain (in relation to laser pulse energy) of a shock-ignited indirect-drive thermonuclear capsule is obtained, which is 22.5 times higher than that at a traditional spark ignition of the capsule with the same DT-fuel mass, wherein the shock-ignition laser pulse energy is 1.5 times less than the energy of a laser pulse at traditional spark ignition. To implement the shock-ignition effect in indirect-drive target, a rapid increase in radiation temperature is required over several hundred picoseconds at the final stage of thermonuclear capsule implosion. The ability of such a rapid response of radiation temperature to variation in the intensity of an x-ray-producing laser pulse is the main factor in the uncertainty of the degree of manifestation of the shock-ignition effect in an indirect-drive target. This circumstance, first of all, requires experimental study.

SELECTION OF CITATIONS
SEARCH DETAIL
...